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Abstract

Using abstract parabolic arguments, we solve the parabolic bi-Laplacian equa-
tion in several spaces simultaneously. We can add perturbations to the problem,
obtaining a perturbed semigroup, which gives the solution in the scale of spaces,
and showing the robustness of the result with respect to the perturbation. For
introducing the perturbations, we construct an existence and regularity theory for
the unperturbed parabolic bi-Laplacian equation and then add the perturbations.
Finally, following the same methods, we consider the problem in bigger space, the
uniform Bessel-Lebesgue spaces, and also higher order powers of the Laplacian.
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1 Introduction

In this paper we address the solvability of some fourth order linear parabolic equations in
RN . More precisely, we consider

{

ut +∆2u+ Pu = 0, x ∈ R
N , t > 0

u(0) = u0 in RN (1.1)

∗Partially supported by Project MTM2009–07540, MEC and GR58/08 Grupo 920894, UCM, Spain.
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with u0 a suitable initial data defined in RN and P a linear perturbation. We will consider
space dependent perturbations of the form Pu :=

∑

a,b Pa,bu with

Pa,bu := Db(d(x)Dau) x ∈ R
N (1.2)

for some a, b ∈ {0, 1, 2, 3} such that a+b ≤ 3, where Da, Db denote any partial derivatives
of order a, b, and a given function d(x) with x ∈ RN .

Our main goal is to consider in (1.1) some large classes of initial data u0 in RN as
well as to consider wide classes of perturbations. For the latter we will consider classes of
coefficients d(x) with weak integrability properties. More precisely, we will assume below
that the coefficient d(x) belongs to some locally uniform space Lp

U(R
N), 1 ≤ p ≤ ∞,

composed of the functions f ∈ Lp
loc(R

N) such that there exists C > 0 such that for all
x0 ∈ RN

∫

B(x0,1)

|f |p ≤ C

endowed with the norm ‖f‖Lp
U (RN ) = supx0∈RN ‖f‖Lp(B(x0,1)).

As for the initial data we will consider the standard Lebesgue space, Lq(RN), 1 < q <
∞, or Bessel-Lebesgue spaces Hα,q(RN), with 1 < q < ∞, α ∈ R and even uniform Bessel
spaces Ḣα,q

U (RN ) to be introduced below.
Given such classes of initial data and perturbations we want to find suitable smoothing

estimates on the solutions as will be explained below.
Note that for P = 0 the solution of problem (1.1) can be described as the convolution

of the initial data with the self-similar fundamental kernel for the bi–Laplacian operator,
which satisfies suitable Gaussian bounds; see e.g. [9, 10] and [8, 6].

Recently, results in Bessel-Lebesgue spaces have been proved in [7] for P 6= 0. By
means of resolvent estimates for ∆2 + P , the authors proved the well possedness of (1.1)
with Pu = d(x)u, that is a perturbation with a, b = 0. They also found suitable smoothing
estimates as the ones we will find below.

Here, instead of relying on elliptic resolvent estimates for operators ∆2+P , with P as
in (1.2), we rely on a more abstract “parabolic” argument developed in [14] and applied
there to parabolic equations with second order elliptic operators. With this approach
we consider a simpler problem, the one with P = 0, that we can solve in several spaces
simultaneously. That is, we consider a semigroup of solutions defined on a scale of spaces.
For such simpler problem we start by proving suitable smoothing estimates on the spaces
of the scale. Then we consider a suitable perturbation, P , that acts between two spaces on
the scale. With these ingredients the abstract results in [14] allow to obtain a perturbed
semigroup that corresponds to the equation with P 6= 0. Such perturbed semigroup
inherits some of the smoothing estimates of the original one in some of the spaces of the
scale which are determined by the perturbation P itself.

Another important result that we are able to stablish using the tools developed in [14]
is that of the robustness with respect to the perturbation. In this direction we are able to
prove two important results. First, we show that all constants involved in the smoothing
estimates of the perturbed semigroups, including the exponential bounds on them, are
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bounded uniformly for bounded families of perturbations (i.e. for families of coefficients
d(x) as in (1.2) which are bounded in the uniform space Lp

U(R
N)). Second, we prove that

the perturbed semigroups obtained as above, continuously depend on the perturbation.
That is, if the coefficients d(x) depend on a parameter and converge in the space Lp

U(R
N),

then the corresponding semigroups converge in norm.
As mentioned above this approach was applied in [14] to second order parabolic equa-

tions in bounded and unbounded domains, allowing perturbations in the equation and in
the boundary conditions.

In this paper however we carry out these ideas to fourth order parabolic equations in
RN as in (1.1). Hence we need to develop an existence and regularity theory in suitable
scales of spaces for the parabolic bi–Laplacian equation, i.e. (1.1) with P = 0, in order
to later introduce the perturbations. For this we use as much as informations as we have
about the heat equation ut − ∆u = 0, in RN and use that ∆2 is the square operator of
−∆. In particular we show that the same scales of spaces available for −∆ can be used
for (1.1). In such scales suitable smoothing estimates for (1.1) with P = 0 are obtained.

We now state one of the main results that we prove below, see Theorem 5.10. Note that
this result applies in the Bessel–Lebesgue scale. A similar one, with technical differences,
holds in the uniform Bessel scale, see Theorem 6.8.

Theorem 1.1 Let Pa,b be as in (1.2) with k, a, b ∈ {0, 1, 2, 3}, k = a + b. Assume that
‖d‖Lp

U (RN ) ≤ R0 with p > N
4−k

.

Then for any 1 < q < ∞ and such Pa,b there exists an interval I(q, a, b) ⊂ (−1+a
4
, 1− b

4
)

containing (−1 + a
4
+ N

4p
, 1− b

4
− N

4p
), such that for any γ ∈ I(q, a, b), we have a strongly

continuous, analytic semigroup, SPa,b
(t) in the space H4γ,q(RN), for the problem

{

ut +∆2u+Db(d(x)Dau) = 0, x ∈ RN , t > 0
u(0) = u0 in RN .

Moreover the semigroup has the smoothing estimates

‖SPa,b
(t)u0‖H4γ′,q(RN ) ≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H4γ,q(RN ), t > 0, u0 ∈ H4γ,q(RN)

for every γ, γ′ ∈ I(q, a, b) with γ′ ≥ γ, and

‖SPa,b
(t)u0‖Lr(RN ) ≤

Mq,re
µt

t
N
4
( 1
q
− 1

r
)
‖u0‖Lq(RN ), t > 0, u0 ∈ Lq(RN)

for 1 < q ≤ r ≤ ∞, with some Mγ′,γ, Mq,r and µ ∈ R depending on d only through R0.
Furthermore, the interval I(q, a, b) is given by

I(q, a, b) = (−1 +
a

4
+

N

4
(
1

p
− 1

q′
)+, 1−

b

4
− N

4
(
1

p
− 1

q
)+).

Finally, if

dε → d in Lp
U (R

N), p >
N

4− k
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then for every 1 < q < ∞ and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖SPε(t)− SP (t)‖L(H4γ,q(RN ),H4γ′,q(RN )) ≤
C(ε)

tγ′−γ
, ∀ 0 < t ≤ T

for all γ, γ′ ∈ I(q, a, b), γ ≥ γ′ and for any 1 < q ≤ r ≤ ∞

‖SPε(t)− SP (t)‖L(Lq(RN ),Lr(RN )) ≤
C(ε)

t
N
4
( 1
q
− 1

r
)
, ∀ 0 < t ≤ T.

Observe that in the theorem above just one perturbation Pa,b is considered for the
bi–Laplacian operator. Also note the ranges of spaces for which we can solve the equation
are determined by the base space in terms of 1 < q < ∞, the integrability p of the coeffi-
cient d(x) and the order of derivatives a, b. Several perturbations can be thus combined
together, although not all combinations are allowed. We discuss below a general proce-
dure to determine whether or not two given perturbations can be combined together; see
Remark 5.11.

The paper is organized as follows. In Section 2 we recall the main results in [14]
that will be used in this paper. Note that Theorem 2.3 is stated containing a case not
considered in [14] but that will be required further below.

In Section 3 we collect the construction of suitable scales of spaces for sectorial opera-
tors (that is, negative of generators of analytic semigroups) in Banach spaces. For this we
follow the general constructions in [1] and construct both an interpolation/extrapolation
scale and a fractional power scale. On these scales the operator defines a strongly con-
tinuous analytic semigroup with suitable smoothing estimates, see Propositions 3.6 and
3.7.

In Section 4 we assume that a sectorial operator as in Section 3 is such that its
square is also sectorial. Then we show that both the interpolation/extrapolation scale
of the operator and its square coincide after a suitable labeling. We also obtain the
corresponding smoothing estimates for the semigroup of the square of the operator; see
Propositions 4.3 and 4.4. In this section the results in [12] will play an essential role.

Then we apply all these abstract results to (1.1). In Section 5 we prove that ∆2 defines
an analytic semigroup in the scales of Lebesgue and Bessel–Lebesgue spaces which satisfy
suitable smoothing estimates; see Lemma 5.2. Then using the results in Section 2 we are
able to add perturbations to the equation along the lines described above, see Lemma 5.5,
Lemma 5.7 and Theorem 5.10. Some extension to fractional–like derivatives in (1.2) can
be found in Theorem 5.12. In this case a, b are nonnegative real and 0 ≤ a+ b < 4.

The same strategy is carried out in Section 6 for (1.1) in the uniform Bessel–Lebesgue
scale. Such scale was used for linear and nonlinear heat equations in [3, 5]. Such spaces
are useful because, among other properties, they are very large spaces whose functions do
not satisfy any smallness behavior at infinity and contain the standard Bessel–Lebesgue
spaces as closed subspaces. After some result on these spaces in Proposition 6.1 that
complements the ones in [3], we obtain resolvent estimates for the Laplacian operator
that prove that it is sectorial and that allows us to use the results in Section 4 to handle
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the bi–Laplacian in uniform spaces. Then in Lemma 6.4 we show that the bi–Laplacian
parabolic equation defines an analytic semigroup with suitable smoothing estimates in
the uniform Bessel–Lebesgue scale. Then in Lemma 6.6 and Theorem 6.8 we introduce
the perturbations and prove an analogous result to Theorem 1.1 in this scale. Note that
since uniform spaces are not reflexive (even for q = 2) we can only consider the case b = 0
in (1.2) and in Theorem 1.1, see Theorem 6.8.

Finally, in Section 7 we show how to obtain all the results in Sections 4, 5 and 6 for
other powers of the Laplacian (−∆)m, m ∈ N as the main part in the elliptic operator.

2 Some previous results

We recall some results from [14] that will be needed later on. Let {Xα}α∈I be a family
of Banach spaces, with α in an interval I, endowed with a norm ‖ · ‖α. Let S(t) be a
semigroup on a scale {Xα}α∈I , such that

‖S(t)‖β,α := ‖S(t)‖L(Xβ ,Xα) ≤
M0(β, α)

tα−β
, ∀ 0 < t ≤ 1 (2.1)

for all α, β ∈ I, α ≥ β for some constant M0(β, α) > 0.
Now, assume that for some fixed α ≥ β, with 0 ≤ α − β < 1 we have a linear

perturbation satisfying
P ∈ L(Xα, Xβ). (2.2)

0 ≤ α− β < 1. (2.3)

We will sometimes use “nested” spaces, that is, for all α, β ∈ I with α ≥ β we have

Xα ⊂ Xβ (2.4)

with continuous inclusion and the norm of the inclusion will be denoted ‖i‖α,β. This will
be explicitly stated when used.

Consider the perturbed problem

u(t; u0) = S(t)u0 +

∫ t

0

S(t− τ)Pu(τ ; u0) dτ, t > 0, (2.5)

which corresponds to solving the problem ut + Au = Pu, where −A is the infinitesimal
generator of the semigroup S(t).

The following result is taken from [14, Proposition 10] and states the existence of a
perturbed semigroup defined by (2.5).

Theorem 2.1 Assume (2.1), (2.2), and (2.3). Then for every R0 > 0 and every

P ∈ L(Xα, Xβ) with ‖P‖L(Xα,Xβ) ≤ R0
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and for every γ, γ′ ∈ I such that

γ ∈ E(α) = (α− 1, α], γ′ ∈ R(β) = [β, β + 1), γ′ ≥ γ, (2.6)

there exist constants ω = ω(γ, γ′, R0) ≥ 0 and M0 = M0(γ, γ
′, R0) such that, for t > 0,

there exists a unique solution of (2.5), which defines a mapping from Xγ into Xγ′ as

SP (t)u0 := u(t; u0), for all t > 0

such that
‖SP (t)u0‖γ′ ≤ M0e

ωtt−(γ′−γ)‖u0‖γ , γ′ ≥ γ. (2.7)

In particular for any γ ∈ [β, α], SP (t) ∈ L(Xγ) and it is a semigroup of linear contin-
uous operators in Xγ.

The same is true for any γ ∈ E(α), if the scale is nested.

Now we turn into the continuity of the perturbed semigroup with respect to the per-
turbation. With the setting above, assume that we have two perturbations

Pi ∈ L(Xα, Xβ), i = 1, 2, 0 ≤ α− β < 1.

Our goal is then to compare semigroups SPi
(t), i = 1, 2. Hence assume

‖Pi‖L(Xα,Xβ) ≤ R0 i = 1, 2

for some R0 > 0. Also, consider the existence and regularity intervals as in (2.6)

γ ∈ E(α) = (α− 1, α], γ′ ∈ R(β) = [β, β + 1), γ′ ≥ γ.

Consider then an initial data u0 ∈ Xγ, and the corresponding solutions of the per-
turbed problem

ui(t; u0) = SPi
(t)u0 = S(t)u0 +

∫ t

0

S(t− τ)Piu
i(τ ; u0) dτ, t > 0.

Then we have the following continuity result, see [14, Theorem 14].

Theorem 2.2 With the notations above, for any R0 > 0, there exists a sufficiently small
T0 such that for all perturbations Pi, i = 1, 2, such that ‖Pi‖L(Xα,Xβ) ≤ R0,

‖SP1(t)− SP2(t)‖L(Xγ ,Xγ′ )
≤ L(T0, R0)

tγ′−γ
‖P1 − P2‖L(Xα,Xβ), for all 0 < t ≤ T0

and for every T > T0

‖SP1(t)− SP2(t)‖L(Xγ ,Xγ′ )
≤ L(T, T0, R0)‖P1 − P2‖L(Xα,Xβ), for all T0 < t ≤ T.
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Finally we will also need the following result about the analyticity of the semigroup
defined by (2.5). Note that the first part of the Theorem below is taken from [14, Theorem
12], but the second part we introduce here will be also needed further below.

Theorem 2.3 Assume the scale is nested, that is, (2.4), and that for any γ ∈ I, if −A
denotes the infinitesimal generator of S(t) in Xγ, then its domain is given by D(A) =
Xγ+1.

Also assume the scale satisfies either one of the following interpolation properties:
i) If Y is a Banach space and T ∈ L(Xγ , Y ) and T ∈ L(Xγ′, Y ) then T ∈ L(Xθγ+(1−θ)γ′ , Y )
for θ ∈ [0, 1] and

‖T‖L(Xθγ+(1−θ)γ′ ,Y ) ≤ ‖T‖θL(Xγ ,Y )‖T‖1−θ
L(Xγ′ ,Y ). (2.8)

ii) The following condition is satisfied for any γ, γ′ ∈ I and 0 < θ < 1

‖u‖Xθγ+(1−θ)γ
≤ C‖u‖θXγ

‖u‖1−θ
Xγ′

. (2.9)

Finally, as in Theorem 2.1, assume that for some fixed α ≥ β, with 0 ≤ α− β < 1 we
have a linear perturbation satisfying

P ∈ L(Xα, Xβ) with ‖P‖L(Xα,Xβ) ≤ R0.

Then, there exists some 0 < ω0 = ω0(R0) such that for any Re(λ) ≥ ω0 and any
γ ∈ (α− 1, β) the operator A + λI − P , between Xγ+1 and Xγ, is invertible and

‖
(

A+ λI − P
)−1‖L(Xγ ,Xγ) ≤

C

|λ| , Re(λ) ≥ ω0

and
‖
(

A+ λI − P
)−1‖L(Xγ ,Xγ+1) ≤ C, Re(λ) ≥ ω0

where C is independent of P and λ.
In particular, for every γ ∈ (α − 1, β), the semigroup SP (t) in Xγ in Theorem 2.1 is

analytic.

Proof. The proof of part i) can be found in [14, Theorem 12].
Under the assumption in ii) the same proof remains unchanged up to the point where

for all γ ∈ I the following inequalities are obtained

‖(A+ λ)−1‖L(Xγ ,Xγ) ≤
C

|λ| , Re(λ) ≥ ω

‖(A+ λ)−1‖L(Xγ+1,Xγ+1) ≤
C

|λ| , Re(λ) ≥ ω (2.10)

‖(A+ λ)−1‖L(Xγ ,Xγ+1) ≤ C, Re(λ) ≥ ω.
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At this point we proceed as follows. For any γ ∈ I and γ̃ ∈ (γ, γ + 1) we have that
γ + 1 ∈ (γ̃, γ̃ + 1) and thus, using (2.10) and (2.9), we get for Re(λ) ≥ ω

‖(A+ λ)−1u‖γ+1 ≤ ‖(A+ λ)−1u‖θγ̃‖(A+ λ)−1u‖1−θ
γ̃+1 ≤

C

|λ|θ ‖u‖
θ
γ̃‖u‖1−θ

γ̃ =
C

|λ|θ ‖u‖γ̃

for θ such that γ + 1 = θγ̃ + (1− θ)(γ̃ + 1), that is, θ = γ̃ − γ. Hence we get

‖(A+ λ)−1‖L(Xγ̃ ,Xγ+1) ≤
C

|λ|γ̃−γ
, Re(λ) ≥ ω.

Now the proof concludes as in [14, Theorem 12].

3 Scales of spaces for sectorial operators

In this section, we construct suitable scales of spaces for sectorial operators in Banach
spaces. These constructions follow [1] and, in view of the applications later in this paper,
we particularize for the scales of complex interpolation–extrapolation spaces and the scale
of fractional power spaces.

Following [1], let E0, E1 be Banach spaces with continuous inclusion E1 ⊂ E0 and
consider the class H(E1, E0) of linear operators in E0, with domain E1 such that if A0 ∈
H(E1, E0), then−A0 generates a strongly continuous analytic semigroup in E0, {e−A0t; t ≥
0}.

For generators of analytic semigroups we have the following well known definitions.

Definition 3.1

i) [11, Definition 1.3.1 pg 18]. A closed operator in a Banach space E0, A0, with domain
D(A0), is sectorial if there exists a sector

Sa,φ = {z ∈ C : φ ≤ |arg(z − a)| ≤ π, z 6= a} ⊂ ρ(A0) (3.1)

for some a ∈ R and φ ∈ (0, π/2), such that

‖(A0 − λ)−1‖E0 ≤ M |λ− a|−1 for all λ ∈ Sa,φ. (3.2)

ii)[1, Section 1.2]. H(E1, E0) =
⋃

κ≥1
ω>0

H(E1, E0, κ, ω), where A0 ∈ H(E1, E0, κ, ω) if

−ω + A0 ∈ Lis(E1, E0) and

κ−1 ≤ ‖(A0 − λ)x‖E0

|λ|‖x‖E0 + ‖x‖E1

≤ κ, Re(λ) ≤ −ω x ∈ E1. (3.3)

The following result establishes the equivalence between both definitions.

Proposition 3.2 Both definitions i) and ii) in Definition 3.1 are equivalent.
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Proof. i)⇒ii)
Define E1 := D(A0) with the graph norm, that is

‖ · ‖E1 := ‖ · ‖G(A0) := ‖ · ‖E0 + ‖A0(·)‖E0.

Note that [1, Remark 1.2.1 pg 11] proves (3.3) provided we prove

|λ|‖x‖E0 ≤ κ‖(A0 − λ)x‖E0 Re(λ) ≤ −ω x ∈ E1.

Thus from (3.2) we get

M |λ− a|‖x‖E0 ≤ ‖(A0 − λ)x‖E0 for all λ ∈ Sa,φ, x ∈ D(A0) = E1.

Now, if we take ω > 0 such that−ω <Re(a), then−ω ∈ ρ(A0), thus−ω+A0 ∈ Lis(E1, E0)

and |λ|
|λ−a| ≤ M̃ for all Re(λ) ≤ −ω. Hence

M̃M |λ|‖x‖E0 ≤ ‖(A0 − λ)x‖E0 Re(λ) ≤ −ω x ∈ E1.

ii)⇒i)
For proving this, we first use Proposition [1, I.1.4.1, pg 15], which read in terms of our

notation, states that if A0 ∈ H(E1, E0, κ, ω) then there exist κ ≥ 1, ω > 0, −ω0 ∈ (−ω, 0)
and θ ∈ (0, π/2) such that we have that

1

5κ
≤ ‖(A0 − λ)x‖E0

|λ|‖x‖E0 + ‖x‖E1

≤ 5κ x ∈ E1

for λ ∈ Σ−ω0,θ := {|arg(z − ω0) ≤ θ + π/2|} ⊂ ρ(A0).
Note that taking a = −ω0 and φ = π

2
− θ we define Sa,φ = Σ−ω0,θ and we just need to

check that
‖(A0 − λ)−1‖E0 ≤ M |λ− a|−1 λ ∈ Sa,φ

From 1
5κ

≤ ‖(A0−λ)x‖E0

|λ|‖x‖E0
+‖x‖E1

we get for λ ∈ Sa,φ

C|λ|‖x‖0 ≤ ‖(A0 − λ)x‖0 x ∈ E1

which, taking y = (A0 − λ)x, reads

‖(A0 − λ)−1y‖E0 ≤
C

|λ|‖y‖E0

and since |λ+ω0|
|λ| ≤ C̃ for all λ ∈ Sa,φ, we get

‖(A0 − λ)−1y‖E0 ≤
CC̃

|λ+ ω0|
‖y‖E0 :=

M

|λ− a|‖y‖E0.
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Note that for A0 ∈ H(E1, E0), we define

type(A0) = − inf{Re(σ(A0))}
and observe that this quantity will play an important role in the estimates for semigroups
below, see e.g. (3.12). For details on this definition see [1, pg. 17, pg. 34 and II.5.1.2, pg.
69], noting that there, the notation is slightly different.

In what follows we will momentarily assume that

0 ∈ ρ(A0). (3.4)

With this it can be proved that the norm ‖ · ‖E1 is equivalent ‖A0 · ‖E0 , and we can start
a recurring construction as follows.

Consider E2 := D(A1) = {u ∈ E1, A1u ∈ E1} where A1 : E2 →֒ E1 is the realization
(and also the closure) of A0 in E1 and endowed with the norm ‖ · ‖E2 = ‖A1 · ‖E1.

We can iterate this process to get a discrete scale of Banach spaces {En, n ∈ N} and
the realizations of A0 in En, which we denote by An, satisfy An ∈ H(En+1, En) and are
isometric isomorphisms from En+1 → En, see [1, V.1.2.1, pg. 256].

For the construction of the negative side of the scale, define E−1 as the completion
of E0 relatively to the norm ‖ · ‖E−1 := ‖A−1

0 · ‖E0 , which is a Banach space such that
E0 →֒ E−1 densely and A−1 is the unique continuous extension of A0, which is an isometric
isomorphism from E0 → E−1. This extension is called again the realization of A0 in E−1.

Again, we iterate the process of completion with the norm generated by the new
operator and we get a negative discrete scale {E−n, n ∈ N} and A−n ∈ H(E−n+1, E−n),
where A−n denotes the realization of A0, the closure of A−n+1 in E−n and is an isometric
isomorphism from E−n+1 → E−n see [1, V.1.3.2, pg. 263] and the comments on [1, pg.
264].

So we have a two-sided discrete nested scale ([1, V.1.3.4, pg 264]):

{Ek, k ∈ Z}, Ak ∈ H(Ek+1, Ek) (3.5)

where Ak denotes the realization of A0, the closure of Ak+1 in Ek and is an isometric
isomorphism from Ek+1 → Ek which satisfies

ρ(Ak) = ρ(A0) k ∈ Z. (3.6)

In order to have a better description of the negative scale we can use dual spaces as
follows, provided E0 is reflexive.

Assume E0 is reflexive and let E♯
0 := E ′

0 the dual space and E♯
1 := D(A♯

0), where
A♯

0 : E
♯
1 ⊂ E♯

0 →֒ E♯
0 is the adjoint operator of A0, which satisfies A♯

0 ∈ H(E♯
1, E

♯
0), see [1,

I.1.2.3, pg. 13].
Then, we repeat the process above and construct a discrete scale {E♯

n; n ∈ N}, which
can be identified with the original one by

E−n = (E♯
n)

′ and A−n = (A♯
n)

′ n ∈ N, (3.7)

where the dashes denote the duals, see [1, V.1.4.9, pg. 272].
Now we construct intermediate spaces between the discrete scale {Ek, k ∈ Z} following

two different procedures.

10



3.1 Construction of the interpolation-extrapolation scale for A0

Recall that if a Banach space, sayG, is densely included in other Banach space, H , they are
said to be an interpolation couple. Also, an interpolation functor of exponent 0 < θ < 1,
[·, ·]θ, is a map such that for two given interpolation couples G0, G1 and H0, H1, we
have Banach spaces Gθ = [G1, G0]θ and Hθ = [H1, H0]θ such that G1 ⊂ Gθ ⊂ G0,
H1 ⊂ Hθ ⊂ H0 and for A ∈ L(G0, H0) ∩ L(G1, H1), then A ∈ L(Gθ, Hθ) and

‖A‖L(Gθ,Hθ) ≤ ‖A‖1−θ
L(G0,H0)

‖A‖θL(G1,H1)
, (3.8)

see [16].

Remark 3.3 There are many interpolation functors that can be used here, but in par-
ticular we choose complex interpolation for simplicity and because in the applications to
(1.1) it leads to a very convenient scale of spaces.

Starting with the discrete scale (3.5) and taking the complex interpolation method,
we proceed as in [1, V.1.5.1, pg. 275] to obtain the spaces

Eα := Ek+θ := [Ek+1, Ek]θ, θ ∈ (0, 1) k ∈ Z, (3.9)

and the operator Aα as the interpolation of Ak+1 and Ak, as in (3.8). Thus we obtain the
continuous nested interpolation scale

{Eα, α ∈ R}, Aα ∈ H(Eα+1, Eα) (3.10)

and Aα is an isometry from Eα+1 into Eα. Note that if α > β, Eα is densely included in
Eβ and Aα is the realization of A0 in Eα. Moreover, for every α ∈ R

ρ(Aα) = ρ(A0), (3.11)

see [1, V.1.1.2.e), pg. 252].
Now, since Aβ ∈ H(Eβ+1, Eβ), −Aβ generates an analytic semigroup in Eβ with the

property [1, V.2.1.3, pg. 289]:

‖e−Aβt‖L(Eβ ,Eα) ≤
C(α− β)

tα−β
eσt t > 0, α, β ∈ R, α ≥ β (3.12)

for any σ > type(A0) and C(α− β) is bounded for α, β in bounded sets of R.
If E0 is reflexive, we can interpolate in the dual scale {E♯

n, n ∈ Z} as well. We
take again the complex interpolation [·, ·]θ, and the negative intermediate spaces can be
identified with the dual of the positive ones as

E−α = (E♯
α)

′ and A−α = (A♯
α)

′ for α > 0, (3.13)

see [1, V.1.5.12, pg. 282]. Also, the semigroup in the spaces of the negative side can be
identified with the duals by [1, V.2.3.2, pg. 298]:

e−A−αt = (e−A♯
αt)′ α > 0. (3.14)
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Note that the semigroups in (3.12) are extensions or restrictions of each other one,
that is, given α ≥ β, then

e−Aβt|Eα = e−Aαt, t ≥ 0.

For details see Lemma [1, V.2.1.2]. Hence, we have the following.

Definition 3.4 Under the assumptions above we say that the operator A0 defines an
analytic semigroup SA0(t) in the interpolation scale {Eα}α∈R in the sense that

SA0(t)|Eα = e−Aαt, ∀α ∈ R.

Observe that

‖SA0(t)‖L(Eβ ,Eα) ≤
C(α− β)

tα−β
eσt t > 0, α, β ∈ R, α ≥ β

for any σ > type(A0) and C(α− β) is bounded for α, β in bounded sets of R.

Remark 3.5 Note that we could have taken any other interpolation functor as long as it
has the reiteration property (as the complex interpolation does)

[Eα, Eβ ]η = E(1−η)α+ηβ 0 < η < 1, α, β ∈ R

such as real interpolation, and the scale would have had the same properties (3.9), (3.10),
(3.11) and (3.12). But then we would have had to use the associated dual interpolation
functor of it for the negative part of the scale, to obtain (3.13) and (3.14). For more
information see [1, V.1.5.11 pg. 282].

Now we construct the interpolation scale and the semigroup in the scale, as in Defini-
tion 3.4, without assuming (3.4).

Proposition 3.6 Let A0 ∈ H(E1, E0) and take c such that 0 ∈ ρ(A0 + cI).
Then the scale {Eα}α∈R generated by A0 + cI, as above, is independent of c and for

any α ∈ R, the realization of A0 in Eα, denoted as Aα, satisfies

Aα ∈ H(Eα+1, Eα)

and for all α ∈ R

ρ(Aα) = ρ(A0).

Hence we have an analytic semigroup SA0(t) defined in the scale {Eα}α∈R such that
SA0(t)|Eα = e−Aαt, α ∈ R, and satisfies

‖SA0(t)‖L(Eβ ,Eα) ≤
C(α− β)

tα−β
eσt t > 0, α ≥ β ∈ R

for any σ > type(A0).
Furthermore if E0 is reflexive, then E−α = (E♯

α)
′, A−α = (A♯

α)
′ for α > 0, and

e−A−αt = (e−A♯
αt)′.

12



Proof. If 0 ∈ ρ(A0), the construction has been carried above.
If 0 6∈ ρ(A0), there exists c ∈ R such that Ã0 = A0 + cI satisfies 0 ∈ ρ(Ã0), so we can

perform the construction above for the operator Ã0. Note that the corresponding scale
of spaces is independent of c because the interpolation scale is only determined by the
spaces {Ek}k∈Z, and these spaces have equivalent norms independently of the c chosen.

Thus, with Ãα = Aα + cI in Eα and applying standard arguments in [13] or [11] we
obtain that

e−Aαt = e−cte−Ãαt

and the result follows.

3.2 Construction of the fractional power scale for A0

Now, starting again with the discrete scale (3.5), we construct a fractional power scale
{Fα}α∈R following [1]. See also [11] and [12]. For this we will also assume for a moment
that

(−∞, 0] ⊂ ρ(A0). (3.15)

Since the intermediate spaces between the integer scale (3.5) might be different to the
ones in the previous section, see Remark 3.8 below, we denote now

Fk = Ek for k ∈ Z.

We first construct the positive fractional power scale. Using (3.15), the resolvent
estimate in the sector (see Proposition 3.1) and integrating on a curve which surrounds
the sector (3.1), one can give a suitable integral expression for the operator A−α

0 for α > 0,
which is bijective from E0 → R(A−α

0 ) ⊂ E0; for more details see [1, III.4.6, pg. 147], [11],
[12]. This implies that Aα

0 = (A−α
0 )−1 is well defined, and therefore we can define

Fα = D(Aα
0 ) = R(A−α

0 ), α ≥ 0 (3.16)

with the norm ‖ · ‖α = ‖Aα
0 · ‖0. Note that this construction for α = n ∈ N coincides with

An
0 and Fn = En.
So we get the positive fractional power scale

{Fα, α ≥ 0}, Aα ∈ H(Fα+1, Fα), α ≥ 0, (3.17)

where Aα is the realization of A0 on Fα and is an isometry, see [1, V.1.2.4, pg. 258] and
[1, V.1.2.6, pg. 260]. Moreover, for every α ≥ 0

ρ(Aα) = ρ(A0) (3.18)

again because of [1, V.1.1.2.e), pg. 252].
For the negative scale, note that (3.15) together with (3.6) implies (−∞, 0] ⊂ ρ(An)

for any n ∈ Z. Fix now N ∈ N and take A−N ∈ H(F−N+1, F−N). With the construction
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above as in (3.16) but with the operator A−N in F−N , we get the extrapolated fractional
power scale of order N ,

Fα−N = D(Aα
−N) α ≥ 0, (3.19)

see [1, V.1.3.8, pg. 266] and [1, V.1.3.9, pg. 267]. Then we have

{Fα, α ≥ −N}, Aα ∈ H(Fα+1, Fα), ρ(Aα) = ρ(A0) α ≥ −N

and Aα is an isometry from Eα+1 into Eα.
Again, Fk = Ek for k ∈ Z, k ≥ −N , and for α ≥ 0, Fα and Aα above coincide with

the ones in (3.17).
Now fix Aβ : Fβ+1 → Fβ for any β ≥ −N . Renaming Fβ = Z, Fβ+1 = Z1 we have the

following reiteration property (see [1, V.1.2.6, pg. 260] or [12, Proposition 10.6])

Zε = D(Aε
β) = Fβ+ε (3.20)

for ε ∈ [0, 1], and Aβ is sectorial in Z, thus we can apply [11, I.1.4.3, pg. 26], to get

‖e−Aβt‖L(Fβ ,Fα) ≤
C(α− β)

tα−β
, t > 0, α ≥ β ≥ −N (3.21)

for any σ > type(A0).
As above, if E0 is reflexive, we can identify the negative side of the scale with some

dual spaces by means of [1, V.1.4.12, pg. 274] getting

F−α = (F ♯
α)

′ and A−α = (A♯
α)

′, α > 0 (3.22)

with
e−A−αt = (e−A♯

αt)′. (3.23)

Therefore analogously to Definition 3.4 we say that A0 defines an analytic semigroup
SA0(t) in the fractional power scale {Fα}α≥−N in the sense that

SA0(t)|Fα = e−Aαt, ∀ α ≥ −N

and

‖SA0(t)‖L(Fβ ,Fα) ≤
C(α− β)

tα−β
, t > 0, α ≥ β ≥ −N.

Now we construct the fractional power scale and the semigroup without assuming
(3.15).

Proposition 3.7 Let A0 ∈ H(E1, E0) and take c such that (−∞, 0] ∈ ρ(A0 + cI).
Then given N ∈ N, the scale {Fα}α≥−N generated by A0+ cI, as above, is independent

of c and the realizations of A0 in Fα, denoted by Aα, satisfy

Aα ∈ H(Fα+1, Fα) ρ(Aα) = ρ(A0) α ≥ −N.
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Hence we have an analytic semigroup SA0(t) defined in the scale {Fα}α≥−N such that
SA0(t)|Fα = e−Aαt, α ≥ −N , satisfies

‖SA0(t)‖L(Fβ ,Fα) ≤
C(α− β)

tα−β
eσt t > 0, α ≥ β ≥ −N

for any σ > type(A0).

Furthermore if E0 is reflexive, then F−α = (F ♯
α)

′, A−α = (A♯
α)

′ and e−A−αt = (e−A♯
αt)′

for 0 < α ≤ N .

Proof. The case (−∞, 0] ∈ ρ(A0) has been discussed before.
If (−∞, 0] 6∈ ρ(A0), there exists c ∈ R such that Ã0 = A0+cI satisfies (−∞, 0] ∈ ρ(Ã0).

Then the corresponding scale of spaces is independent of c, see the comments on Definition
1.4.7 in [11]. Thus, with Ãα = Aα + cI in Fα and applying standard arguments in [13] or
[11] we obtain that

e−Aαt = e−cte−Ãαt

and the result follows.

Remark 3.8 Note that after Propositions 3.6 and 3.7, for A0 ∈ H(E1, E0) we have a
discrete scale (3.5) and with the notations of these propositions, we have

Fk = Ek for k ∈ Z, k ≥ −N.

However, the intermediate spaces, Fα and Eα, for α ∈ R \Z, α ≥ −N , do not need to
coincide in general. But, if A0 has bounded imaginary powers, that is, there exist ε > 0
and M ≥ 1 such that

‖Ait
0 ‖L(E1,E0) ≤ M for t ∈ [−ε, ε], (3.24)

then Eα and the scale of fractional powers Fα coincide, see [1, V.1.5.13, pg. 283].
An important case when this happens is when E0 is a Hilbert space and A0 is selfad-

joint.
Finally observe that abusing of the notations we have used the same notations Aα

and e−Aαt for both the interpolation and fractional power scales. This should produce no
confusion since it will be always clear from the context what scale are we working with.

4 The scales and semigroup for A2
0

In this section we show how the scale of spaces constructed in Section 3 for A0 can be
used for the squared operator A2

0 := A0 ◦A1. That is, our goal here is to relate the scales
of the square of an operator, A2

0, with the scale of the A0. We will show that if we perform
the constructions in Section 3 with A2

0 we arrive to the same spaces than for A0 with a
suitable labeling.

Hence, we assume as in the previous section that

A0 ∈ H(E1, E0).
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Observe that by Propositions 3.6 and 3.7 we can consider the associated interpolation scale
{Eα}α∈R or the fractional power scale {Fα}α≥−N , N ∈ N without assuming 0 ∈ ρ(A0) or
(−∞, 0] ∈ ρ(A0), respectively. Also, note that with the notation of the previous section,

A2
0 := A0 ◦ A1, A2

0 : E2 → E0.

Hence, we will assume furthermore that

A2
0 ∈ H(E2, E0).

The following result, which is a particular case of [12, Proposition 10.5], gives a criteria
for determining when A2

0 is a sectorial operator.

Proposition 4.1 Let A0 ∈ H(E1, E0) with (−∞, 0] ⊂ ρ(A0) and satisfying ‖(A0 −
λ)−1‖ ≤ K

|λ| for λ ∈ S0,φ with φ ∈ (0, π
4
) where S0,φ is a sector as (3.1) with vertex

a = 0.
Then A2

0 satisfies S0,2φ ⊂ ρ(A2
0) and

‖(A2
0 − λ)−1‖E0 ≤

K

|λ|
for λ ∈ S0,2φ, thus A2

0 ∈ H(E2, E0).

Remark 4.2

i) As an indication for the proof observe that to solve A2
0u− λu = f , with λ ∈ C we can

rewrite this equation as
(A0 + ω2)(A0 + ω1)u = f

where ω1 and ω2 = −ω1 denote the complex square roots of λ. Thus λ will be in ρ(A2
0) if

both ω1, ω2 ∈ ρ(A0). In particular, if λ ∈ S0,2φ, with φ < π
4
, then ω1, ω2 ∈ S0,φ ⊂ ρ(A0),

thus S0,2φ ⊂ ρ(A2
0). For the estimate, just note that

‖(A2
0 − λ)−1‖E0 ≤ ‖(A0 + ω1)

−1(A0 + ω2)
−1‖E0 ≤

K1

|ω1|
‖(A0 + ω2)

−1‖E0 ≤
K

|ω1||ω2|
=

K

|λ| .

ii) 0 ∈ ρ(A0) implies 0 ∈ ρ(A2
0).

iii) In general, there is no relationship between type(A2
0) and type(A0).

So now we can construct both interpolation and fractional scales for A2
0 following the

procedures explained in Section 3. In the next two results we will show that these scales
coincide with the ones for A0 after a suitable labeling.

Proposition 4.3 Let A0 ∈ H(E1, E0) and assume A2
0 := A0 ◦ A1 ∈ H(E2, E0). Let

{Eα}α∈R be the interpolation scale for A0 as in Proposition 3.6. Then on the scale Xα =
E2α with α ∈ R we have A2

α := Aα ◦ Aα+1 ∈ H(Xα+1, Xα) and A2
0 defines a semigroup

SA2
0
(t) in the scale {Xα}α∈R that satisfies SA2

0
(t)|Xα = e−A2

αt and

‖SA2
0
(t)‖L(Xβ ,Xα) ≤

C(α− β)

tβ−α
eµt t > 0, α, β ∈ R, α ≥ β
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for any µ > type(A2
0). The constant C(α− β) is bounded for α, β in bounded sets of R.

If E0 is reflexive, the negative side of the scale can be described as

X−α = (X♯
α)

′ and A2
−α = (A2♯

α )
′, α > 0

and it holds that
e−A2

−αt = (e−A2♯
α t)′.

Furthermore, the problem

{

ut + A2
αu = 0, t > 0

u(0) = u0 ∈ Xα

for any α ∈ R has a unique solution u(t) = SA2
0
(t)u0 = e−A2

αtu0.

Proof. Step 1. We start proving the result assuming 0 ∈ ρ(A0).
Hence, 0 ∈ ρ(A2

0) and in this case it is easy to see that the construction (3.4)–(3.7)
applied to A2

0 leads to the discrete scale {Xk : k ∈ Z} with Xk = E2k, k ∈ Z and
A2

k = Ak ◦ Ak+1 ∈ H(Xk+1, Xk).
By means of the complex interpolation, the construction (3.9)–(3.12) leads for α = k+θ

with θ ∈ (0, 1), k ∈ Z, to

Xα := Xk+θ := [Xk+1, Xk]θ = [E2(k+1), E2k]θ = E2α

and
A2

α := Aα ◦ Aα+1 ∈ H(Xα+1, Xα)

for any α ∈ R.
In particular, by (3.12) with A2

α, we have as in Definition 3.4 that A2
0 defines an

analytic semigroup SA2
0
(t) in the scale {Xα}α∈R that satisfies SA2

0
(t)|Xα = e−A2

αt and

‖SA2
0
(t)‖L(Xα,Xβ) ≤

C(α− β)

tβ−α
eµt t > 0, α, β ∈ R, α ≥ β

for any µ > type(A2
0).

If E0 is reflexive we can identify, as above, the negative side of this scale with some dual
spaces. In fact, from (3.7) we haveX−k = (X♯

k)
′ andA2

−k = (A♯2
k )

′ and by interpolation, see

(3.13), X−α = (X♯
α)

′ and A2
−α = (A♯2

α )
′, α > 0, with e−A2

−αt = (e−A♯2
α t)′ and (A2

α)
♯ = (A♯

α)
2,

see (3.14).
Step 2. Now, if 0 6∈ ρ(A0), there exists c ∈ R such that Ã0 = A0+cI satisfies 0 ∈ ρ(Ã0)

and Ã0 ∈ H(E1, E0). Now we prove that Ã2
0 ∈ H(E2, E0). For this note that Ã

2
0 = A2

0+P ,
with P = 2cA0 + c2I, which satisfies ‖P‖L(E1,E0) ≤ R0. Since A2

0 ∈ H(E2, E0), using this

and Corollary 1.4.5, page 27 in [11] we get Ã2
0 ∈ H(E2, E0).

Therefore we can use Step 1 for Ã2
0 and observe that from Proposition 3.6 the inter-

polation scale for Ã0, {Eα}α∈R, is independent of c. Denote then Xα = E2α.
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Then Ã2
0 defines an analytic semigroup SÃ2

0
(t) in the scale {Xα}α∈R and as above

SÃ2
0
(t)|Xα = e−Ã2

αt and

‖SÃ2
0
(t)‖L(Xα,Xβ) ≤

C(α− β)

tβ−α
eµ̃t t > 0, α, β ∈ R, α ≥ β

where µ̃ > type(Ã2
0).

Now we transfer this information to the semigroup defined by A2
0. For this observe

that A2
0 = Ã2

0 − P , with P = 2cA0 + c2I as above, and for all α ∈ R,

‖P‖L(Xα,Xα− 1
2
) ≤ R0

with R0 independent of α.
Then we can apply Theorem 2.1 with β = α − 1

2
and α arbitrary, to obtain the

semigroup SA2
0
(t) defined in Xγ for all γ ∈ E(α) := (α−1, α] and satisfying the smoothing

estimate (2.7) from Xγ to Xγ′ for γ ∈ E(α) and γ′ ∈ R(β) := [α− 1
2
, α+ 1

2
), γ′ ≥ γ.

In order to extend (2.7) for all γ′ > γ, we perform a “jump” argument as follows.
Given α ∈ R, take β = α − 1

2
and α′ > α such that α′ < α + 1

2
, so α′ ∈ R(β). Then we

can estimate the semigroup for γ′ in R(β ′) through an intermediate “jump”, that is

γ ∈ E(α) → γ̃ ∈ R(β) ∩ E(α′) → γ′ ∈ R(β ′)

and using SA2
0
(t) = SA2

0
(t/2) · SA2

0
(t/2)

‖SA2
0
(t)u0‖γ′ ≤ M̃eµ(t/2)

(t/2)γ′−γ̃
‖SA2

0
(t/2)u0‖γ̃ ≤ M̃eµ(t/2)

(t/2)γ′−γ̃

M̃eµ(t/2)

(t/2)γ̃−γ
‖u0‖γ =

Meµt

tγ′−γ
‖u0‖γ. (4.1)

So we get (2.7) for γ ∈ E(α) = (α−1, α] and γ′ ∈ R(β ′) = [α′− 1
2
, α′+ 1

2
) andM depending

on γ and γ′. Iterating this process, we get (2.7) for all γ′ > γ with µ >type(A2
0).

For the analyticity we use Theorem 2.3. Since {Xα}α∈R are interpolation spaces, this
scale satisfies the assumptions of case i) in Theorem 2.3; see (2.8).

Now we turn to the fractional power scale to obtain

Proposition 4.4 Let A0 ∈ H(E1, E0) and assume A2
0 := A0◦A1 ∈ H(E2, E0). Let N ∈ N

and {Fα}α≥−2N be the fractional power scale for A0 as in Proposition 3.7. Then on the
fractional power scale Yα = F2α with α ≥ −N we have A2

α := Aα ◦ Aα+1 ∈ H(Yα+1, Yα)
and A2

0 defines a semigroup SA2
0
(t) in the scale {Yα}α≥−N that satisfies SA2

0
(t)|Fα = e−A2

αt

and

‖SA2
0
(t)‖L(Yβ ,Yα) ≤

C(α− β)

tα−β
eµt t > 0, α ≥ β ≥ −N

for any µ > type(A2
0). The constant C(α− β) is bounded for α, β in bounded sets of R.

If E0 is reflexive, the negative side of the scale can be described as

Y−α = (Y ♯
α)

′ and A2
−α = (A♯2

α )
′ α > 0,
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and it holds that
e−A2

−αt = (e−A2♯
α t)′.

Furthermore, the problem
{

ut + A2
αu = 0, t > 0

u(0) = u0 ∈ Yα

for any α ≥ −N has a unique solution u(t) = SA2
0
(t)u0 = e−A2

αtu0.

Proof. Step 1. We first assume that (−∞, 0] ⊂ ρ(A0). As before, it is easy to see that
the construction in (3.4)–(3.7) applied to A2

0 leads to the discrete scale {Yk : k ∈ Z} with
Yk = E2k = F2k, k ∈ Z and A2

k = Ak ◦ Ak+1 ∈ H(Yk+1, Yk).
Now for α ≥ −N the construction in (3.19) applied to A2

−N , gives a fractional power
scale {Yα : α ≥ −N}

Yα = D((A2
−N)

α+N ), α ≥ −N, A2
α = Aα ◦ Aα+1 ∈ H(Yα+1, Yα).

We prove now that Yα = F2α for α ≥ −N . In fact, because of (3.19) and (3.20), we
have

Yα = D((A2
−N)

α+N) = D(A2α+2N
−N ) = F2α.

Hence, as above, A2
0 defines a semigroup SA2

0
(t) in the scale {Yα}α≥−N that satisfies

SA2
0
(t)|Fα = e−A2

αt and

‖SA2
0
(t)‖L(Yβ ,Yα) ≤

C(α− β)

tα−β
eµt t > 0, α ≥ β ≥ −N

for any µ > type(A2
0), see (3.21).

Also, if E0 is reflexive we can again, by (3.22), identify the negative side of this new
scale with dual spaces

Y−α = (Y ♯
α)

′ and A2
−α = (A♯2

α )
′ 0 < α ≤ N

and from (3.23) we get e−A2
−αt = (e−A♯2

α t)′.
Step 2. Now, if (−∞, 0] 6⊂ ρ(A0), there exists c ∈ ρ(A0) such that Ã0 = A0 + cI

satisfies (−∞, 0] ∈ ρ(Ã0) and Ã0 ∈ H(E1, E0). Now we prove that Ã2
0 ∈ H(E2, E0). For

this note that Ã2
0 = A2

0+P , with P = 2cA0+ c2I, which satisfies ‖P‖L(E1,E0) ≤ R0. Since

A2
0 ∈ H(E2, E0), using this and Corollary 1.4.5, page 27 in [11] we get Ã2

0 ∈ H(E2, E0).
Note that from Proposition 3.7 the fractional power scale for Ã0 is independent of

c and by Step 1 we get the fractional power scale Xα = F2α and a sectorial operator
Ã2

α = Ãα ◦ Ãα+1 ∈ H(Yα+1, Yα). Also Ã2
0 defines an analytic semigroup SA2

0
(t) in the scale

{Yα}α≥−N and as above SÃ2
0
(t)|Yα = e−Ã2

αt and

‖SÃ2
0
(t)‖L(Yα,Yβ) ≤

C(α− β)

tβ−α
eµ̃t, t > 0, α ≥ β ≥ −N

where µ̃ > type(Ã2
0).
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To transfer this information to the semigroup defined by A2
0, observe that A

2
0 = Ã2

0−P
with P = 2cA0 + c2I, as above and

‖P‖L(Yα,Yα− 1
2
) ≤ R0, α ≥ −N

with R0 independent of α. Then, we can apply Theorem 2.1 to obtain the semigroup
SA2

0
(t) in Yγ and smoothing from Yγ to Yγ′ for γ ∈ E(α) := (α − 1, α] and γ′ ∈ R(β) :=

[α − 1
2
, α + 1

2
), γ′ ≥ γ. A similar jump argument as (4.1) concludes the estimate for all

γ′ > γ ≥ −N .
Finally, the analyticity comes again from Theorem 2.3, part ii). In fact note that

fractional power spaces satisfty (2.9), see [1, V.(1.2.12)].

Remark 4.5 According to Remark 3.8 if A0 has bounded imaginary powers, then A2
0 does

as well, see (3.24). In such case both scales and semigroups in Propositions 4.3 and 4.4
coincide, that is, Xα = Yα for α ≥ −N , see [1, V.1.5.13, pg. 283].

5 Some fourth order equations in the Bessel-Lebesgue

spaces in R
N

We will apply the results in Section 4 to prove that the bi-Laplacian in some scales of
spaces defines an analytic semigroup and the bi-Laplacian equation (5.2) has a unique
solution. Then we will consider a general class of perturbations, namely derivative opera-
tors, even with space dependence, to which we will apply the results in Section 2 so that
the perturbed bi-Laplacian equation will be well possed.

We take, A0 = −∆ in Lq(RN), with 1 < q < ∞ with domain D(A0) = H2,q(RN),
where Hk,q(RN), k ∈ N denotes the standard Sobolev spaces (often denoted W k,q(RN)).
In this setting, −∆ is a sectorial operator, [11], [2]. Even more using [2, 9.7, pg. 648] we
get that −∆ (and therefore ∆2 by Remark 4.5) has bounded imaginary powers in Lq(RN)
for 1 < q < ∞. Hence, in the following examples the fractional power scale and the
complex interpolation scale of Section 3 will coincide.

Note that Lq(RN) is reflexive so that the negative scale is described as dual spaces,
see Section 3.

Using the complex interpolation/extrapolation scale with E0 = Lq(RN) and E1 =
H2,q(RN) as in Section 3.1 leads to the scale of Bessel spaces. These spaces are very
convenient because they satisfy the sharp Sobolev embeddings

Hs,q(RN) ⊂







Lr(RN), s− N
q
≥ −N

r
, 1 ≤ r < ∞ if s− N

q
< 0

Lr(RN), 1 ≤ r < ∞ if s− N
q
= 0

Cη(RN) if s− N
q
> η ≥ 0.

For more details, see [11, pg. 35], [1, I.2] or [16, 1]. In what follows we will denote
Eα := H2α,q(RN), α ∈ R.
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Therefore for 1 < q < ∞ the heat equation

{

ut −∆u = 0, x ∈ RN , t > 0
u(0) = u0, in RN (5.1)

defines a semigroup S−∆(t) in the scale of Bessel spaces {Eα}α∈R that satisfies the smooth-
ing estimates

‖S−∆(t)u0‖Lr(RN ) ≤
Mr,qe

µ0t

t
N
2
( 1
q
− 1

r
)
‖u0‖Lq(RN ), t > 0, u0 ∈ Lq(RN)

for 1 ≤ q ≤ r ≤ ∞ and some constant Mr,q and

‖S−∆(t)u0‖H2α,q(RN ) ≤
Mα,βe

µ0t

tα−β
‖u0‖H2β,q(RN ), t > 0, u0 ∈ H2β,q(RN)

for 1 < q < ∞, α, β ∈ R, α ≥ β. In both estimates above µ0 > 0 can be arbitrarily small,
because type(−∆) = 0. This as well as some other useful properties of −∆ and ∆2 in
Lq(RN), 1 < q < ∞, are collected in the next Lemma.

Lemma 5.1 Take 1 < q < ∞ and denote E0 = Lq(RN).
i) The Laplace operator −∆ in E0 with domain E1 = D(−∆) = H2,q(RN) satisfies the
estimate

‖(−∆− λ)−1‖L(E0) ≤ M |λ|−1 for all λ ∈ S0,φ

for S0,φ as in (3.1), φ > 0 arbitrarily small. Furthermore σ(−∆) = [0,∞) and therefore

type(−∆) = 0.

ii) The bi–Laplacian operator ∆2 in E0 with domain E2 = D(∆2) = H4,q(RN) satisfies
the estimate

‖(∆2 − λ)−1‖L(E0) ≤ M |λ|−1 for all λ ∈ S0,2φ

with φ > 0 arbitrarily small. Furthermore σ(∆2) = [0,∞) and therefore

type(∆2) = 0.

Proof. The first part, for the Laplacian, is well known. The resolvent estimate, in
particular, can be found in pages 32 and 33 of [11].

For proving ii), since in i) φ > 0 can be taken arbitrarily small, we can apply Proposi-
tion 4.1 and we get that ∆2 is sectorial with sector S0,2φ, where 2φ > 0 can be arbitrarily
small. Then σ(∆2) ⊂ [0,∞) is an immediate consequence of the fact that φ > 0 is ar-
bitrarily small. On the other hand, as we will show in Proposition 6.3, working in the
uniform space L̇q

U(R
N) we actually have σ(∆2) = [0,∞). Then, using [1, Lemma V.1.1.1,

pg. 250] we get σ(∆2) = [0,∞) in Lq(RN) as well. From this, we get type(∆2) = 0.

Now, we can apply Proposition 4.3 to get
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Lemma 5.2 Consider the problem
{

ut +∆2u = 0, x ∈ RN , t > 0
u(0) = u0, in RN .

(5.2)

i) Then for each 1 < q < ∞, (5.2) defines an analytic semigroup, S∆2(t), in the scale
Xα = E2α = H4α,q(RN), α ∈ R, such that for any µ0 > 0 there exists C such that

‖S∆2(t)‖L(H4β,q(RN ),H4α,q(RN )) ≤
C(α− β)

tα−β
eµ0t t > 0, α, β ∈ R, α ≥ β.

ii) The analytic semigroup S∆2(t), in Lq(RN ), 1 < q < ∞, satisfies

‖S∆2(t)‖L(Lq(RN ),Lr(RN )) ≤
Mq,r

t
N
4
( 1
q
− 1

r
)
eµ0t t > 0

for any µ0 > 0 and 1 < q ≤ r ≤ ∞ and some Mq,r > 0.

Proof.

i) We use Proposition 4.3 for A0 = −∆ (note that if suffices to take c = 1 in the proof of
the proposition), and we get that Xα = E2α = H4α,q(RN).

Note that from Lemma 5.1, type(∆2) = 0 and then µ0 > 0 is arbitrary.
ii) For 1 < q < ∞, we use i) with α = 0 and we have that ∆2 defines an analytic semigroup
in Lq(RN).

Now, if r ≥ q we use i) again, now with β = 0, and choosing α such that

−N

r
= 4α− N

q

and we get

‖S∆2(t)u0‖Lr(RN ) ≤ ‖S∆2(t)u0‖H4α,q(RN ) ≤
Mαe

µ0t

tα
‖u0‖Lq(RN ),

which leads to

‖S∆2(t)u0‖Lr(RN ) ≤
Mr,qe

µ0t

t
N
4
( 1
q
− 1

r
)
‖u0‖Lq(RN ).

Again, because of part ii) of Lemma 5.1, type(∆2) = 0 and then µ0 > 0 is arbitrary.

Remark 5.3 For q = 1, if we take any r > 1 and β > N
4r′

then we have H4β,r′(RN) →֒
L∞(RN) and therefore L1(RN) →֒ H−4β,r(RN).

Now using i) with α = 0 we get

‖S∆2(t)u0‖Lr(RN ) ≤
Mr,1e

µ0t

tβ
‖u0‖H−4β,r(RN ) ≤

Mr,1e
µ0t

tβ
‖u0‖L1(RN )

for any β > N
4
(1 − 1

r
). Hence we obtain the estimate in ii) for q = 1 and any r > 1, for

an exponent as close as we want to N
4
(1− 1

r
).
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Observe that the solution of problem (5.2) can be described as the convolution of
the initial data with the self-similar kernel for the bi–Laplacian operator, which satisfies
suitable Gaussian bounds; see e.g. [9, 10] and [8, 6].

Now we can use the results in Section 2 to perturb equation (5.2). For this we first
consider perturbations which do not involve derivatives and that can be handled with the
semigroup defined by (5.2) in the scale of Lebesgue spaces as in part ii) in Lemma 5.2.
For this, as a consequence of Hölder inequality, we get a result, as in [14, Lemma 21, pg.
37].

Lemma 5.4 Assume that m ∈ Lp(RN), then the multiplication operator

Pu(x) = m(x)u(x)

satisfies, for r ≥ p′ and 1
s
= 1

r
+ 1

p
, that

P ∈ L(Lr(RN), Ls(RN)), ‖P‖L(Lr(RN ),Ls(RN )) ≤ C‖m‖Lp(RN ).

Then we obtain the following preliminary result. This will be later extended to Bessel
spaces, see Theorem 5.10 below.

Lemma 5.5 Let m be such that ‖m‖Lp(RN ) ≤ R0, with p > N
4
. Then for any 1 < q < ∞

the problem
{

ut +∆2u = m(x)u x ∈ RN , t > 0
u(0) = u0 in RN

defines an analytic semigroup S(t) in Lq(RN) that satisfies

‖S(t)u0‖Lr(RN ) ≤
Mr,qe

µt

t
N
4
( 1
q
− 1

r
)
‖u0‖Lq(RN ), t > 0, u0 ∈ Lq(RN)

for 1 < q ≤ r ≤ ∞ with Mq,r and µ depending on m only through R0.
Furthermore, if, as ε → 0,

mε → m in Lp(RN), p >
N

4

then for every 1 < q ≤ r ≤ ∞ and T > 0 there exists C(ε) → 0 as ε → 0, such that the
corresponding semigroups satisfy

‖Sε(t)− S(t)‖L(Lq(RN ),Lr(RN )) ≤
C(ε)

t
N
4
( 1
q
− 1

r
)
, ∀ 0 < t ≤ T.

Proof. We denote Zα(r) := Lr(RN), α(r) = −N
4r

∈ I := [−N
4
, 0], note that this scale is

not nested. From Lemma 5.2 ii) we get that

‖S∆2(t)‖L(Zβ ,Zα) ≤
C

tα−β
, 0 < t ≤ 1, α ≥ β,
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for any α, β ∈ I = [−N
4
, 0]. On the other hand, from Lemma 5.4, we have for r ≥ p′, that

is, for each α0 := − N
4p′

≤ α ≤ 0

P ∈ L(Zα, Zβ), ‖P‖L(Zα,Zβ) ≤ C‖m‖Lp(RN )

with α = −N
4r
, β = −N

4s
= α− N

4p
and 0 ≤ α− β = N

4p
< 1, since p > N

4
.

Hence, with α and β fixed as above, we can apply Theorem 2.1 and we get a semigroup
S(t) = SP (t) in Zγ for γ ∈ [β, α] and satisfying the smoothing estimates

‖S(t)‖L(Zγ ,Zγ′)
≤ Mγ,γ′eωt

tγ′−γ

for the indexes

γ ∈ E(α) = (α− 1, α] ∩ I, γ′ ∈ R(β) = [β, β + 1) ∩ I, γ′ ≥ γ.

Now we show that as α ranges in [α0, 0], γ, γ
′ range in I = [−N

4
, 0]. To see this, recall

that α ∈ [α0, 0], β = α− N
4p

and we can take γ, γ′ ∈ [β, α]. Thus using a “jump” argument

as in (4.1) we just need to find the smallest β and the biggest α. Since β = α − N
4p

the

smallest β is β = α0 − N
4p

= −N
4
, while the biggest α is α = 0.

For the convergence of the semigroups, first, using Lemma 5.4 we get that ‖Pε −
P‖L(Lr(RN ),Ls(RN )) → 0, that is ‖Pε − P‖L(Zα,Zβ) → 0 for any α ∈ [α0, 0], β = α− N

p
. Now

we can apply Theorem 2.2 to get the convergence of the semigroup.
The analyticity will follow from Theorem 5.10 below for a = b = 0.

Remark 5.6 For a similar result with q = 1, see Remark 5.3.

We are now going to work with more general perturbations and in particular we will
consider perturbations that involve derivatives. For this we will need to work with the
semigroup defined by (5.2) in the scale of Bessel spaces as in part i) of Lemma 5.2. For
this, let Dr denote any partial derivative of order r ∈ N and fix m ∈ N.

Then if m ≥ r, we have Dr : Hm,q(RN) → Hm−r,q(RN). On the other hand, Dr :
H−m,q(RN) → H−m−r,q(RN ), is defined as

< Dru, ϕ >= (−1)r
∫

RN

uDrϕ, for all ϕ ∈ Hm+r,q′(RN ).

Finally, if m < r, Dr : Hm,q(RN) → Hm−r,q(RN) is defined as

< Dru, ϕ >= (−1)r−m

∫

RN

DmuDr−mϕ, for all ϕ ∈ Hr−m,q′(RN )

which corresponds to the composition Dr = Dr−mDm, where Dm : Hm,q(RN) → Lq(RN)
and Dr−m : Lq(RN) → Hm−r,q(RN).

Thus for any 1 < q < ∞, r ∈ N and m ∈ Z, we have

Dr ∈ L(Hm,q(RN), Hm−r,q(RN)), ‖Dr‖L(Hm,q(RN ),Hm−r,q(RN )) ≤ C
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for some C independent of r, m, q.
Now we extend this definition to non-integerm. For this takem ∈ Z and s ∈ (m,m+1)

and take θ ∈ (0, 1) such that s = θm+ (1− θ)(m+ 1).
Then by interpolation

Dr : [Hm+1,q(RN), Hm,q(RN)]θ = Hs,q(RN) → [Hm+1−r,q(RN), Hm−r,q(RN)]θ = Hs−r,q(RN),

and we get that for any r ∈ N and s ∈ R

Dr ∈ L(Hs,q(RN), Hs−r,q(RN)), ‖Dr‖L(Hs,q(RN ),Hs−r,q(RN )) ≤ C (5.3)

for some C independent of r, s, q.
Using this and the results in Section 2 we get the following result in which we allow

perturbations with derivatives of order k ≤ 3.

Lemma 5.7 Take J ∈ N and aj ∈ R, kj ∈ N for j = 1, ..., J with maxj |aj | ≤ R0 and
k = max

j
|kj| ≤ 3. Then for each 1 < q < ∞ the problem

{

ut +∆2u+
∑J

j=0 ajD
kju = 0, x ∈ RN , t > 0

u(0) = u0 in RN

defines an analytic semigroup, S(t), on the scale Xα = E2α = H4α,q(RN ), for any α ∈ R

such that

‖S(t)‖L(H4β,q(RN ),H4α,q(RN )) ≤
C(α− β)

tα−β
eµt t > 0, α, β ∈ R, α ≥ β

and also

‖S(t)‖L(Lq(RN ),Lr(RN )) ≤
C(q, r)

t
N
4
( 1
q
− 1

r
)
eµt t > 0,

for 1 < q ≤ r ≤ ∞, with µ, C(α − β), C(q, r) depending on {aj} only through R0. The
constant C(α− β) is bounded for α, β in bounded sets of R.

Furthermore, if for all j = 1, ..., J , we have aεj → aj as ε → 0 then for any T > 0,
α ≥ β or r ≥ q, there exists C(ε) → 0 as ε → 0, such that the corresponding semigroups
satisfy

‖Sε(t)− S(t)‖L(H4β,q(RN ),H4α,q(RN )) ≤
C(ε)

tα−β
, ∀ 0 < t ≤ T

and

‖Sε(t)− S(t)‖L(Lq(RN ),Lr(RN )) ≤
C(ε)

t
N
4
( 1
q
− 1

r
)
, ∀ 0 < t ≤ T

for 1 < q ≤ r ≤ ∞.

Proof. Since Xα = E2α = H4α,q(RN), α ∈ R, we get from Lemma 5.2 i) that

‖S∆2(t)‖L(Xβ ,Xα) ≤
C

tα−β
, 0 < t ≤ 1, α, β ∈ R, α ≥ β.
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From (5.3) each of the perturbations Pj = ajD
kj satisfies ‖Pj‖L(Xα,Xα−kj/4

) ≤ C for all

α ∈ R with C = C(R0) independent of j, and we have that

P =
J
∑

j

Pj ∈ L(Xα, Xα−k/4), ‖P‖L(Xα,Xα−k/4) ≤ C(J,R0).

Hence, we can apply Theorem 2.1 with α ∈ R, β = α− k
4
and since the scale is nested,

we get a semigroup S(t) = SP (t) in Xγ for γ ∈ E(α) := (α − 1, α] that satisfies the
smoothing estimates

‖S(t)‖L(Xγ ,Xγ′ )
≤ Mγ,γ′eµt

tγ′−γ

for every γ, γ′ such that

γ ∈ E(α) := (α− 1, α] and γ′ ∈ R(β) := [α− k/4, α+ k/4), γ′ ≥ γ.

Again, since α ∈ R is arbitrary we can use the “jump” argument as in (4.1), we get
the smoothing estimate for any γ, γ′ ∈ R, γ′ > γ.

The analyticity comes again from Lemma 5.2 and part i) in Theorem 2.3.
Now, if 1 < q < ∞ and r ≥ q we take β = 0 and α such that H4α,q(RN) →֒ Lr(RN),

that is −N
r
= 4α− N

q
. Then we get

‖S(t)u0‖Lr(RN ) ≤ C‖S(t)u0‖H4α,q(RN ) ≤
C(α)eµt

tα
‖u0‖Lq(RN ) =

Cq,re
µt

t
N
4
( 1
q
− 1

r
)
‖u0‖Lq(RN )

The convergence of the semigroups is consequence of Theorem 2.2 since if aεj → aj we
would have Pε → P in L(Xα, Xα−k/4) as ε → 0 for any α.

Remark 5.8 For a similar result with q = 1, see Remark 5.3.

Finally, we study more general perturbations in which we allow a space dependence.
For this, take k ∈ N which is the order of the perturbation and take a, b ∈ N such that
a+ b = k. We define Pa,b to be a perturbation of the form

Pa,bu = Db(d(x)Dau) x ∈ R
N

for a given function d(x) with x ∈ RN , in the sense that for any smooth enough ϕ

< Pa,bu, ϕ >= (−1)b
∫

RN

d(x)DauDbϕ. (5.4)

We will assume below that the coefficient d(x) belongs to the locally uniform space
Lp
U(R

N) composed of the functions f ∈ Lp
loc(R

N ) such that there exists C > 0 such that
for all x0 ∈ RN

∫

B(x0,1)

|f |p ≤ C (5.5)
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endowed with the norm
‖f‖Lp

U (RN ) = sup
x0∈RN

‖f‖Lp(B(x0,1)).

The following result states the spaces of the Bessel scale between which a perturbation
Pa,b is a well behaved linear operator.

Proposition 5.9 Let Pa,b be as above, d ∈ Lp
U(R

N) and let s ≥ a, σ ≥ b. Then for
1 < q < ∞ and

(s− a− N

q
)− + (σ − b− N

q′
)− ≥ −N

p′
(5.6)

we have

Pa,b ∈ L(Hs,q(RN), H−σ,q(RN)), ‖Pa,b‖L(Hs,q(RN ),H−σ,q(RN )) ≤ C‖d‖Lp
U (RN ).

Proof. Let {Qi}, i ∈ ZN be a partition of RN in open disjoint cubes centered in i ∈ ZN

with sides of length 1, parallel to the axes. Note that RN = ∪i∈ZNQi and Qi ∩Qj = ∅ for
i 6= j. Then

|
∫

RN

dDauDbϕ| ≤
∑

i

|
∫

Qi

dDauDbϕ| ≤
∑

i

(

∫

Qi

|d|p) 1
p (

∫

Qi

|Dau|n) 1
n (

∫

Qi

|Dbϕ|τ ) 1
τ

where we have applied Hölder’s inequality with 1
p
+ 1

n
+ 1

τ
= 1. If (5.6) holds, we can

choose n, τ as before such that s− N
q
≥ a− N

n
and σ− N

q′
≥ b− N

τ
. Now, we can use the

embeddings of Bessel spaces and, for some C is independent of the cube Qi, obtain

|
∫

RN

dDauDbϕ| ≤ C‖d‖Lp
U (RN )

∑

i

‖u‖Hs,q(Qi)‖ϕ‖Hσ,q′(Qi)

≤ C‖d‖Lp
U (RN )

(

∑

i

‖u‖qHs,q(Qi)

)1/q (
∑

i

‖ϕ‖q′
Hσ,q′(Qi)

)1/q′

. (5.7)

Then, as in [4, Lemma 2.4], we get for any 0 ≤ α ≤ 2 and any 1 < q < ∞
∑

i

‖φ‖qH2α,q(Qi)
≤ C‖φ‖q

H2α,q(RN )
for all φ ∈ H2α,q(RN),

and we obtain from (5.7)

|
∫

RN

dDaubϕ| ≤ C‖d‖Lp
U (RN )‖u‖Hs,q(RN )‖ϕ‖Hσ,q′(RN )

which gives the result.

Now we can use again the results in Section 2 to obtain the following.
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Theorem 5.10 Let Pa,b be as in (5.4) with k, a, b ∈ {0, 1, 2, 3}, k = a + b. Assume that
‖d‖Lp

U (RN ) ≤ R0 with p > N
4−k

, then for any 1 < q < ∞ and such Pa,b there exists an

interval I(q, a, b) ⊂ (−1 + a
4
, 1 − b

4
) containing (−1 + a

4
+ N

4p
, 1 − b

4
− N

4p
), such that for

any γ ∈ I(q, a, b), we have a strongly continuous, analytic semigroup, SPa,b
(t) in the space

H4γ,q(RN ), for the problem

{

ut +∆2u+Db(d(x)Dau) = 0, x ∈ RN , t > 0
u(0) = u0 in RN .

Moreover the semigroup has the smoothing estimates

‖SPa,b
(t)u0‖H4γ′,q(RN ) ≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H4γ,q(RN ), t > 0, u0 ∈ H4γ,q(RN)

for every γ, γ′ ∈ I(q, a, b) with γ′ ≥ γ, and

‖SPa,b
(t)u0‖Lr(RN ) ≤

Mq,re
µt

t
N
4
( 1
q
− 1

r
)
‖u0‖Lq(RN ), t > 0, u0 ∈ Lq(RN)

with 1 < q ≤ r ≤ ∞ and some Mγ′,γ, Mq,r and µ ∈ R depending on d only through R0.
Furthermore, the interval I(q, a, b) is given by

I(q, a, b) = (−1 +
a

4
+

N

4
(
1

p
− 1

q′
)+, 1−

b

4
− N

4
(
1

p
− 1

q
)+).

Finally, if

dε → d in Lp
U (R

N), p >
N

4− k

then for every 1 < q < ∞ and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖SPε(t)− SP (t)‖L(H4γ,q(RN ),H4γ′,q(RN )) ≤
C(ε)

tγ′−γ
, ∀ 0 < t ≤ T

for all γ, γ′ ∈ I(q, a, b), γ ≥ γ′ and for any 1 < q ≤ r ≤ ∞

‖SPε(t)− SP (t)‖L(Lq(RN ),Lr(RN )) ≤
C(ε)

t
N
4
( 1
q
− 1

r
)
, ∀ 0 < t ≤ T.

Proof. By Proposition 5.9 and using Xα = E2α = H4α,q(RN ), α ∈ R, if we assume for a
moment that (5.6) is satisfied for some s and σ, then it would be true that

P ∈ L(Xs/4, X−σ/4), ‖P‖L(Xs/4,X−σ/4) ≤ C‖d‖Lp
U (RN ).

Hence we can apply Theorem 2.1 above with α = s/4 and β = σ/4 provided 0 ≤ α−β < 1,
that is s+ σ < 4.
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Thus, we check now that (5.6) and s+σ < 4 hold for suitable pairs (s, σ). For this we
rewrite the ranges for s, σ in Proposition 5.9 in terms of s̃ = s−a− N

q
and σ̃ = σ− b− N

q′
,

so s̃ ≥ −N
q
, σ̃ ≥ −N

q′
since s ≥ a, σ ≥ b. Then (5.6) and s+ σ < 4 read

s̃ ≥ −N

q
, σ̃ ≥ −N

q′
, −N

p′
≤ s̃− + σ̃−, s̃+ σ̃ < 4− k −N. (5.8)

Note that since necessarily −N
p′
< 4− k −N , we get that p > N

4−k
.

The set of admissible parameters (s̃, σ̃) given by (5.8) depends on the relationship
between q, q′ and p. Note that (5.8) defines a planar trapezium–shaped polygon, P̃,
whose long base is on the line s̃ + σ̃ = 4 − k − N and the short base is on the line
s̃ + σ̃ = −N

p′
in the third quadrant. As for the lateral sides note that the restriction

−N
p′

≤ s̃− + σ̃− adds the condition that s̃ ≥ −N
p′

in the second quadrant and σ̃ ≥ −N
p′

in the fourth. These have to be combined with s̃ ≥ −N
q
and σ̃ ≥ −N

q′
. Therefore the

lateral sides are given by the lines s̃ = max{−N
p′
,−N

q
} and σ̃ = max{−N

p′
,−N

q′
}. One of

the possible cases is depicted in Figure 1.

Figure 1: Admissible s̃ and σ̃ with p > q, q′

s̃

σ̃

−N
q

−N
q′

s̃+ σ̃ = −N
p′

s̃+ σ̃ = 4− k −N

s̃+ σ̃ = −N

Note that the polygon P̃ transforms into a similar shaped polygon P which determines
the region of admissible pairs (s, σ).

In any case, projecting P̃ onto the axes gives the following ranges for s̃ and σ̃

s̃ ∈ [max{−N

p′
,−N

q
}, 4− k −N −max{−N

p′
,−N

q′
})

σ̃ ∈ [max{−N

p′
,−N

q′
}, 4− k −N −max{−N

p′
,−N

q
}).

Thus

s ∈ J1 = [a + (
N

q
− N

p′
)+, 4− b− (

N

q′
− N

p′
)+)
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σ ∈ J2 = [b+ (
N

q′
− N

p′
)+, 4− a− (

N

q
− N

p′
)+).

For each pair of admissible pairs (s, σ) ∈ P, by Theorem 2.1 with α = s
4
and β = σ

4
,

we get a perturbed semigroup and smoothing estimates (2.7) in the spaces corresponding
to γ and γ′ as in (2.6), i.e.

γ ∈ E(α) = (α− 1, α], γ′ ∈ R(β) = [β, β + 1), γ′ ≥ γ.

Hence as (s, σ) range in the region P a repeated “jump” argument as in (4.1) gives that
the smoothing estimates hold for γ ∈ ⋃(s,σ)∈P E(s/4) and γ′ ∈ ⋃(s,σ)∈P R(σ/4), γ′ ≥ γ.
This leads to

γ ∈ (
inf J1

4
− 1,

sup J1

4
], γ′ ∈ [−sup J2

4
, 1− inf J2

4
), γ′ ≥ γ

which, after a simple calculation, reads

γ, γ′ ∈ I(q, a, b) = (−1 +
a

4
+

N

4
(
1

q′
− 1

p′
)+, 1−

b

4
− N

4
(
1

q
− 1

p′
)+).

For the estimates in Lebesgue spaces we use the Sobolev inclusions. Taking 1 < q < ∞,
γ = 0 and 0 < γ′ ∈ I(q, a, b) we define r > q such that H4γ′,q(RN) →֒ Lr(RN ), that is
−N

r
= 4γ′ − N

q
. Then we get

‖SPa,b
(t)u0‖Lr(RN ) ≤ ‖SPa,b

(t)u0‖H4γ′,q(RN ) ≤
Mγ′eµt

tγ′ ‖u0‖Lq(RN )

and γ′ = N
4
(1
q
− 1

r
). Now we follow a jump argument as in (4.1) where we take SPa,b

(t/2)u0

as initial data in Lr(RN ), repeat the argument above to estimate SPa,b
(t)u0 in Lr̃(RN) for

r̃ > r > q. Since the intervals I(r, a, b) contain (−1 + a
4
− N

4p
, 1 − b

4
− N

4p
) which do not

depend on r, repeating the jump process several times we can get the estimate for any
r̃ ≥ q.

The convergence of the semigroups is a direct consequence of Theorem 2.2, since
Proposition 5.9 gives that if dε → d in Lp

U (R
N), then Pε → P in L(Xs/4, Xσ/4) for any

pair of admissible (s, σ) ∈ P. The case of Lebesgue spaces follows from this as well.
Finally, the analyticity comes again from Lemma 5.2 and part i) in Theorem 2.3.

Remark 5.11 Note that different perturbations Pa,b can be combined together, although
not all combinations are allowed.

In fact, if we consider two such perturbations, say Pa,b and Pc,d, then they can be
combined provided

max{a, c}+max{b, d} < 4

with an interval for P = Pa,b+Pc,d given by I(q, P ) := I(q,max{a, c},max{b, d}). Observe
that there are 127 possible such combinations.
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Here we present a scheme for determining, given a perturbation Pa,b, which are the
other ones allowed to be combined with it. For example, if we fix a perturbation Pa,b with
k = 3, then, all perturbations Pc,d with c ≤ a and d ≤ b can be combined with it, and the
interval is I(q, P ) = I(q, a, b).

For example a perturbation P2,1 can be combined with all the ones included in the
shaded area in Figure 2 with interval I(q, 2, 1). However, the encircled perturbations P3,0

and P0,2 cannot be combined together.

Figure 2: Combining perturbations.

If we fix a perturbation Pa,b with k = 2 then, all perturbations Pc,d with c ≤ a and
d ≤ b can be combined with it, and also those with c− 1 ≤ a or d− 1 ≤ b, but not both at
the same time.

The same happens for Pa,b with k = 1, all perturbations Pc,d with k ≤ 1 can be combined
with it.

Observe that perturbations in (5.4) can be handled as above because we could deter-
mine the spaces of the Bessel scale between which a perturbation Pa,b is a well behaved
linear operator; see Proposition 5.9. However the fact that a, b are integer derivatives is
not really essential. Therefore, this class of perturbations can be extended to the following
one, where derivatives are replaced by fractional powers of the Laplacian as long as this
one is well defined in our scale. For example −∆+ cI, with c > 0 can be used in this way,
because the operator (−∆+ cI)r/2, r > 0 satisfies for any s ∈ R,

(−∆+ cI)r/2 ∈ L(Hs,q(RN), Hs−r,q(RN)), ‖(−∆+ cI)r/2‖L(Hs,q(RN ),Hs−r,q(RN )) ≤ C

for some C independent of s, r, q. Note that this estimate is analogous to (5.3) for a
non-integer r.

Thus, the perturbations

Pa,bu = (−∆+ cI)b/2(d(x)(−∆+ cI)a/2u) a, b ≥ 0

for any a, b ∈ R, in the sense that for any smooth enough ϕ

< Pa,bu, ϕ >=

∫

RN

d(x)(−∆+ cI)a/2u(−∆+ cI)b/2ϕ, (5.9)
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with d ∈ Lp
U (R

N), satisfy the statement in Proposition 5.9.
Then proceeding exactly as in Theorem 5.10, we recover the same results for this kind

of perturbations, with the only difference that now k = a + b is a real number smaller
than 4.

Theorem 5.12 Let a, b, k ≥ 0 be real numbers such that k = a+ b < 4 and Pa,b be as in
(5.9). Assume that ‖d‖Lp

U (RN ) ≤ R0 with p > N
4−k

, then for any 1 < q < ∞ and such Pa,b

there exists an interval I(q, a, b) ⊂ (−1+ a
4
, 1− b

4
) containing (−1+ a

4
+ N

4p
, 1− b

4
− N

4p
), such

that for any γ ∈ I(q, a, b), we have a strongly continuous, analytic semigroup, SPa,b
(t) in

the space H4γ,q(RN ), 1 < q < ∞, for the problem

{

ut +∆2u+ Pa,bu = 0, x ∈ R
N , t > 0

u(0) = u0 in RN .

Moreover the semigroup has the smoothing estimates

‖SPa,b
(t)u0‖H4γ′,q(RN ) ≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H4γ,q(RN ), t > 0, u0 ∈ H4γ,q(RN)

for every γ, γ′ ∈ I(q, a, b) with γ′ ≥ γ, and

‖SPa,b
(t)u0‖Lr(RN ) ≤

Mq,re
µt

t
N
4
( 1
q
− 1

r
)
‖u0‖Lq(RN ), t > 0, u0 ∈ Lq(RN)

with 1 < q ≤ r ≤ ∞ and some Mγ′,γ, Mq,r and µ ∈ R depending on d only through R0.
Furthermore, the interval I(q, a, b) is given by

I(q, a, b) = (−1 +
a

4
+

N

4
(
1

p
− 1

q′
)+, 1−

b

4
− N

4
(
1

p
− 1

q
)+).

Finally, if

dε → d in Lp
U (R

N), p >
N

4− k

then for every 1 < q ≤ r ≤ ∞ and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖SPε(t)− SP (t)‖L(H4γ,q(RN ),H4γ′,q(RN )) ≤
C(ε)

tγ′−γ
, ∀ 0 < t ≤ T

for all γ, γ′ ∈ I(q, a, b) with γ′ > γ and for any 1 < q ≤ r ≤ ∞

‖SPε(t)− SP (t)‖L(Lq(RN ),Lr(RN )) ≤
C(ε)

t
N
4
( 1
q
− 1

r
)
, ∀ 0 < t ≤ T.

Note that Remarks 5.3 and 5.11 apply here as well.
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6 Fourth order equations in the uniform Bessel-Lebesgue

spaces in R
N

The heat equation (5.1) and therefore the bi-Laplacian equation (5.2) can be also con-
sidered in much larger spaces than the Bessel spaces above, by taking the initial data in
locally uniform spaces.

For this consider the locally uniform space Lq
U(R

N ) for 1 ≤ q ≤ ∞ defined as in (5.5)
and denote by L̇q

U(R
N) the closed subspace of Lq

U(R
N) consisting of all elements which

are translation continuous with respect to ‖ · ‖Lq
U (RN ), that is

‖τyφ− φ‖Lq
U (RN ) → 0 as |y| → 0

where {τy, y ∈ RN} denotes the group of translations. Note that Lq(RN) ⊂ L̇q
U(R

N) for
1 ≤ q < ∞ and for q = ∞ we get L∞

U (RN) = L∞(RN) and L̇∞
U (RN ) = BUC(RN ).

In order to obtain sharper results we introduce the uniform Bessel-Sobolev spaces
Hk,q

U (RN ), with k ∈ N, as the set of functions φ ∈ Hk,q
loc (R

N) such that

‖φ‖Hk,q
U (RN ) = sup

x∈RN

‖φ‖Hk,q(B(x,1)) < ∞

for k ∈ N. Then denote by Ḣk,q
U (RN) a subspace of Hk,q

U (RN) consisting of all elements
which are translation continuous with respect to ‖ · ‖Hk,q

U (RN ), that is

‖τyφ− φ‖Hk,q
U (RN ) → 0 as |y| → 0

where {τy, y ∈ RN} denotes the group of translations.
Consider the complex interpolation functor denoted by [ , ]θ, for θ ∈ (0, 1), see [16]

for details. Then for 1 ≤ q < ∞, k ∈ N ∪ {0} and s ∈ (k, k + 1) we define θ ∈ (0, 1) such
that s = θ(1 + k) + (1 − θ)k, that is θ = s − k. Then one can define the intermediate
spaces as

Hs,q
U (RN) = [Hk+1,q

U (RN), Hk,q
U (RN)]θ,

and
Ḣs,q

U (RN) = [Ḣk+1,q
U (RN), Ḣk,q

U (RN)]θ.

Using Proposition 4.2 in [3] it is easy to see that the sharp embeddings of Bessel spaces
translate into

Ḣs,q
U (RN) ⊂











L̇r
U (R

N), s− N
q
≥ −N

r
, 1 ≤ r < ∞ if s− N

q
< 0

L̇r
U (R

N), 1 ≤ r < ∞ if s− N
q
= 0

Cη
b (R

N) if s− N
q
> η ≥ 0.

(6.1)

Now, the Laplace operator was considered in the scale of spacesHs,q
U (RN ) and Ḣs,q

U (RN)
in [3] where it was proved that −∆ defines an analytic semigroup. However in the “un-
dotted” spaces the semigroup generated by −∆ is analytic but not strongly continuous
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and these spaces are less convenient to use because smooth functions are not dense in
them; see [3].

Therefore, the scale above is no more than the complex interpolation scale of Section 3
for −∆ in Lq

U(R
N) or L̇q

U(R
N ) respectively. Also, the negative side of the scale is defined

by the interpolation/extrapolation procedure described in Section 3.1. Since this is a
complex interpolation scale, for 0 < s < k, k ∈ N.

Ḣ−s,q
U (RN) = [L̇q

U (R
N), Ḣ−k,q

U (RN)]θ, with θ =
s

k
.

It was moreover proved in [3, Theorem 5.3, pg. 290], that −∆ has bounded imaginary
powers, and therefore this scale coincides with the fractional power one; see Remark 3.8.

However, since the uniform Sobolev spaces are not reflexive, even for q = 2, we do
not get the description of the negative part of the scale in terms of the dual spaces, see
Section 3.

Therefore, we start with some description of the negative spaces which complements
the results in [3].

Proposition 6.1 We have that

L̇p
U (R

N) →֒ Ḣ−s,q
U (RN) if s− N

q′
≥ −N

p′
, s > 0.

Proof. We first assume that 0 ≤ s ≤ 2.
i) We know from Section 3 that Ḣ−s,q

U (RN) is the completion of Ḣ2−s,q
U (RN) with the norm

‖(−∆ + I)−1 · ‖Ḣ2−s,q
U (RN ). This means that f ∈ Ḣ−s,q

U (RN) if and only if there exists an

approximating sequence {fn} ∈ Ḣ2−s,q
U (RN) that converges to f in Ḣ−s,q(RN ).

Since (−∆+ I)−1 is an isometry from Ḣ2−s,q
U (RN) to Ḣ−s,q

U (RN), see the beginning of
Section V.1.3 in [1], this is equivalent to

(−∆+ I)−1fn −→ (−∆+ I)−1f in Ḣ2−s,q(RN ),

and observe that since fn ∈ Ḣ2−s,q
U (RN) then (−∆ + I)−1fn ∈ Ḣ4−s,q

U (RN). Thus, we
get that f ∈ Ḣ−s,q

U (RN) if and only if there exists {un} ∈ Ḣ4−s,q
U (RN) such that un →

(−∆+ I)−1f in Ḣ2−s,q
U (RN).

ii) Now, take f ∈ L̇p
U(R

N), then from the results in [3] we have u = (−∆ + I)−1f ∈
Ḣ2,p

U (RN) and since s− N
q′
≥ −N

p′
holds by assumption, we have Ḣ2,p

U (RN) →֒ Ḣ2−s,q
U (RN),

and 2− s ≥ 0. Therefore u ∈ Ḣ2−s,q
U (RN).

Since Ḣ4−s,q
U (RN) is dense in Ḣ2−s,q

U (RN), there exist un ∈ Ḣ4−s,q
U (RN) such that

‖un − u‖Ḣ2−s,q
U (RN )

n→∞→ 0 and therefore by i), f ∈ Ḣ−s,q
U (RN). Note that the inclusion is

continuous, since (−∆+ I)−1 is an isometry on the scale and then

‖f‖Ḣ−s,q
U (RN ) = ‖(−∆+ I)−1f‖Ḣ2−s,q

U (RN ) ≤ C‖(−∆+ I)−1f‖Ḣ2,p
U (RN ) = C‖f‖L̇p

U (RN ).

In order to prove the result for s ≥ 0, we can repeat the whole argument above,
using (−∆ + I)−n, which is an isometry on the scale, for a suitable n. If 2 ≤ s ≤ 4
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we use n = 2, thus in part i) we obtain that f ∈ Ḣ−s,q
U (RN) if there exists a sequence

{un} ∈ Ḣ6−s,q
U (RN) converging to u = (−∆ + I)−2f in Ḣ4−s,q

U (RN). In part ii) we now
have u ∈ Ḣ4,p

U (RN) →֒ Ḣ4−s,q
U (RN) since now 4− s ≥ 0 and the result follows as before.

In the same way, for 2(k− 1) ≤ s ≤ 2k, we use n = k and repeat the argument above.

Remark 6.2 Note that the embedding in Proposition 6.1 is precisely the one one could
expect from (6.1) if the spaces where reflexive. Also this is the embedding that holds for the
standard Bessel scale as in Section 5. Needless to say the conditions for the embeddings
read also s ≥ N

p
− N

q
.

Using the spaces above and the convolution with the heat kernel, it was proved in
Proposition 2.1, Theorem 2.1 and Theorem 5.3 in [3] that the heat equation defines an
order preserving analytic semigroup in Lq

U (R
N) and , for 1 ≤ q < ∞, which is strongly

continuous in L̇q
U(R

N) and in Eα := Ḣ2α,q
U (RN), α ∈ R. Moreover, this semigroup satisfies

the smoothing estimates

‖S−∆(t)u0‖L̇r
U (RN ) ≤

Mr,qe
µt

t
N
2
( 1
q
− 1

r
)
‖u0‖L̇q

U (RN ), t > 0, u0 ∈ L̇q
U (R

N)

for 1 ≤ q ≤ r ≤ ∞ for µ > 0 arbitrary, and

‖S−∆(t)u0‖Ḣ2α,q
U (RN ) ≤

Mα,βe
µt

tα−β
‖u0‖Ḣ2β,q

U (RN ), t > 0, u0 ∈ Ḣ2β,q
U (RN)

with µ > 0 arbitrary, for any α, β ∈ R, α ≥ β.
It was also proved in [3] using a parabolic argument that type(−∆) = 0 in the L̇q

U(R
N)

spaces (and thus in Ḣα,q
U (RN )), which explains why µ > 0 above is arbitrary.

We now show some relevant information on the spectrum and resolvent of −∆ and ∆2

in the uniform spaces which is analogous to Lemma 5.1.

Proposition 6.3 i) For 1 < q < ∞, in the space E0 := L̇q
U(R

N) the operator −∆ with
domain E1 := D(−∆) = Ḣ2,q

U (RN ), satisfies the estimate

‖(−∆− λ)−1‖L(E0) ≤ M |λ|−1

for all λ in a sector S0,φ as in (3.1) for φ > 0 arbitrarily small.
Furthermore, σ(−∆) = [0,∞), and thus, type(−∆) = 0.

ii) For 1 < q < ∞, in the space E0 := L̇q
U (R

N) the operator ∆2 with domain E2 :=
D(∆2) = Ḣ4,q

U (RN), satisfies the estimate

‖(∆2 − λ)−1‖L(E0) ≤ M |λ|−1

for all λ in a sector S0,2φ as in (3.1) for φ > 0 arbitrarily small.
Furthermore, σ(∆2) = [0,∞), and thus, type(∆2) = 0.
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Proof. To prove part i), observe that, as in page 32–33 in [11], we can obtain an expression
for the operator (−∆ + µI)−1, provided Re(

√
µ) > 0, as a convolution operator. The

expression is
u = (−∆+ µ)−1f = Γµ ∗ f, Re(

√
µ) > 0

with
Γµ(x) =

√
µN−2G2(

√
µx), x ∈ C

N , Re(
√
µ) > 0

where G2 is defined as

G2(x) =
1

(4π)N/2

∫ ∞

0

t−N/2e−t+x·x/4tdt, x ∈ C
N ,

see page 132 in [15] or page 33 in [11].
According to [11], we have for z ∈ C

N and N > 2 and Re(ξ) > 0

|G2(z)| ≤ C|ξ|(2−N)/2(Re ξ)(2−N)/2e−
1
2
Reξ ξ =

√
z · z (6.2)

and if N = 2,

|G2(z)| ≤ Cmax{ln 1

Reξ
, 1}e− 1

2
Reξ ξ =

√
z · z. (6.3)

Now observe that if λ ∈ S0,φ with φ > 0 then for µ = −λ ∈ C \ (−∞, 0] we can
choose Re(

√
µ) > 0. For such λ and similarly to Lemma 5.1 we are going to check that

for f ∈ L̇q
U (R

N) we have the following estimate for u = Γµ ∗ f ,

‖u‖Lq
U (RN ) ≤ C

1

|λ|‖f‖L
q
U (RN ), λ ∈ S0,φ φ > 0.

Let {Qi}, i ∈ ZN , be a partition of RN in open disjoint cubes centered in i ∈ ZN with
edges of length 1, parallel to the axes. Thus Qi ∩Qj = ∅ for i 6= j and RN = ∪iQi.

Then we fix i ∈ Z
N and decompose f ∈ L̇q

U (R
N) in a far and a near region as

in Proposition 2.1 in [3]. For this we denote by N(i) the set for indices j such that
Qi ∩Qj 6= 0. That is, the set for which

dij := inf{dist(x, y), x ∈ Qi, y ∈ Qj} (6.4)

satisfies that dij = 0. Thus we can define, for each i ∈ ZN fixed

Qnear
i = ∪j∈N(i)Qj and Qfar

i = R
N \Qnear

i .

Hence, we decompose f := fnear
i + f far

i := fχQnear
i

+ fχQfar
i

and u := unear
i + ufar

i , with

unear
i := Γµ ∗ fnear

i ufar
i := Γµ ∗ f far

i .

The resolvent estimate will follow from the following estimates of the two terms of the
decomposition. For λ as above, we have first,

‖unear
i ‖Lq(Qi) ≤

C

|λ|‖f‖Lq(Qnear
i ), λ ∈ S0,φ (6.5)
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and, second,

‖ufar
i ‖L∞(Qi) ≤

C

|λ|‖f‖L1
U (Qfar

i ), λ ∈ S0,φ (6.6)

for some C independent if i ∈ ZN .
In fact, since the constants for the embedding L∞(Qi) →֒ Lq(Qi) and restrictions

Lq
U(R

N) →֒ Lq(Qnear
i ), Lq

U (R
N) →֒ L1

U (Q
near
i ) depend onN but can be chosen independent

of p, q and i, (6.5) and (6.6) imply

‖u‖Lq(Qi) ≤
C

|λ|‖f‖L
q
U (RN ), λ ∈ S0,φ (6.7)

for each i ∈ ZN with C independent of i and λ ∈ S0,φ, which gives the result.
Hence, we first prove (6.5). As a consequence of Lemma 5.1, we get for all λ ∈ S0,φ

‖unear
i ‖Lq(Qi) ≤ ‖unear

i ‖Lq(RN ) ≤
C

|λ|‖f
near
i ‖Lq(RN ) =

C(N)

|λ| ‖f‖Lq(Qnear
i ).

We show now (6.6) for N > 2. Observe that f far
i = fχQfar

i
=
∑

j∈ZN\N(i) fχQj
. Hence,

because of (6.2) with z =
√
µx, Re(

√
µ) > 0, x ∈ R

N , µ = −λ and λ ∈ S0,φ, we have for
all x ∈ Qi

|ufar
i (x)| =

∑

j 6∈N(i)

|(Γµ ∗ fχQj
)(x)|

≤
∑

j 6∈N(i)

C sup
y∈Qj

|√µN−2 · (√µ|x− y|)1−N/2Re(
√
µ|x− y|)1−N/2e−

1
2
Re

√
µ|x−y||‖f‖L1(Qj)

≤ C‖f‖L1
U (Qfar

i )

√

|λ|N/2−1
Re(

√
µ)1−N/2

∑

j 6∈N(i)

sup
y∈Qi

|x− y|2−Ne−
1
2
|x−y|Re

√
µ.

Note that for all x ∈ Qi and y ∈ Qj it holds |x− y| ≥ dij, thus

|ufar
i (x)| ≤ C‖f‖L1

U (Qfar
i )

(

√

|λ|
Re(

√
µ)

)N/2−1
∑

j 6∈N(i)

d2−N
ij e−

1
2
dijRe

√
µ.

Hence

‖ufar
i ‖L∞(Qi) ≤ C‖f‖L1

U (Qfar
i )

(

√

|λ|
Re(

√
µ)

)N/2−1
∑

j 6∈N(i)

d2−N
ij e−

1
2
dijRe

√
µ.

Now, using that ♯{j ∈ Z, dij = k} ≤ CkN−1 we obtain

‖ufar
i ‖L∞(Qi) ≤ C‖f‖L1

U (Qfar
i )

(

√

|λ|
Re(

√
µ)

)N/2−1
∞
∑

k=1

ke−
1
2
kRe

√
µ

≤ C‖f‖L1
U (Qfar

i )

(

√

|λ|
Re(

√
µ)

)N/2−1
∫ ∞

1

xe−
1
2
xRe

√
µ dx.
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Finally, changing variables in the integral above as y = Re(
√
µ)x, we obtain

‖ufar
i ‖L∞(Qi) ≤ C

(

√

|λ|
Re(

√
µ)

)N/2−1 1

Re(
√
µ)2

‖f‖L1
U (Qfar

i )

which can be arranged as

‖ufar
i ‖L∞(Qi) ≤

(

√

|λ|
Re(

√
µ)

)N/2+1 C

|λ|‖f‖L1
U (Qfar

i ).

To conclude, observe that for all λ ∈ S0,φ we find

‖ufar
i ‖L∞(Qi) ≤

C

cos(φ/2)N/2+1

1

|λ|‖f‖L1
U (Qfar

i ).

Thus, (6.6) is proved for N > 2.
We show now (6.6) for N = 2. Proceeding as above and using (6.3) we get

‖ufar
i ‖L∞(Qi) ≤ C‖f‖L1

U (Qfar
i )

∑

j 6∈N(i)

max{ln 1

dijRe(
√
µ)

, 1}e− 1
2
dijRe

√
µ.

Using again that ♯{j ∈ Z, dij = k} ≤ CkN−1 we get

‖ufar
i ‖L∞(Qi) ≤ C‖f‖L1

U (Qfar
i )

∞
∑

k=1

kmax{ln 1

kRe(
√
µ)

, 1}e− 1
2
kRe

√
µ

≤ C‖f‖L1
U (Qfar

i )

∫ ∞

0

xmax{ln 1

xRe(
√
µ)

, 1}e− 1
2
xRe

√
µdx

and with the change of variables y = Re(
√
µ)x we obtain,

‖ufar
i ‖L∞(Qi) ≤ ‖f‖L1

U (Qfar
i )

C

Re(
√
µ)2

=
(

√

|λ|
Re(

√
µ)

)2 C

|λ|‖f‖L1
U (Qfar

i ).

Thus for all λ ∈ S0,φ we find

‖ufar
i ‖L∞(Qi) ≤

C

cos(φ/2)2
1

|λ|‖f‖L1
U (Qfar

i )

and the result is proved.
In particular, σ(−∆) ⊂ [0,∞). For the opposite inclusion, note that u(x) = eiωx,

ω ∈ RN satisfies u ∈ L̇p
U(R

N ) and
−∆u = λu

for λ = |ω|2 ⊂ [0,∞), and thus [0,∞) ⊂ σ(−∆).
For part ii), since −∆ is sectorial with sector S0,φ with φ < π/4 and we have the

estimate ‖(−∆ − λ)−1‖ ≤ C
|λ| for λ ∈ S0,φ, we apply Proposition 4.1. Therefore, we
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get that ∆2 is sectorial with sector S0,2φ. Note that σ(∆2) ⊂ [0,∞) because φ > 0 is
arbitrarily small. Also, note again that u(x) = eiωx, ω ∈ RN satisfies u ∈ L̇p

U (R
N) and

∆2u = λu

for λ = |ω|4 ⊂ [0,∞).

Now we are ready to use Proposition 4.3 and an argument as in Lemma 5.2 to get the
next result.

Lemma 6.4 Consider the problem

{

ut +∆2u = 0 x ∈ RN , t > 0
u(0) = u0 in RN .

(6.8)

i) Then for each 1 < q < ∞, (6.8) defines an analytic semigroup, S∆2(t), in the scale
Xα := E2α = Ḣ4α,q

U (RN ), α ∈ R, such that for any µ0 > 0 there exists C such that

‖S∆2(t)u0‖Ḣ4α,q
U (RN ) ≤

Mα,βe
µt

tα−β
‖u0‖Ḣ4β,q

U (RN ), t > 0, u0 ∈ Ḣ4β,q
U (RN)

with α, β ∈ R, α ≥ β.
ii) The analytic semigroup S∆2(t), in L̇q

U(R
N ), 1 < q < ∞, satisfies

‖S∆2(t)u0‖L̇r
U (RN ) ≤

Mq,re
µ0t

t
N
4
( 1
q
− 1

r
)
‖u0‖L̇q

U (RN ), t > 0, u0 ∈ L̇q
U(R

N)

for any 1 < q ≤ r ≤ ∞ and µ0 > 0 and some Mq,r > 0.

For a similar estimate with q = 1 < r ≤ ∞, see Remark 5.3.
We can now adapt the arguments for Bessel and Lebesgue spaces in Section 5 to the

uniform Bessel spaces to perturb equation (6.8) as follows. First, as in [14, Lemma 26,
pg. 43] we have

Lemma 6.5 i) Assume that m ∈ Lp
U(R

N), then the multiplication operator

Pu(x) = m(x)u(x)

satisfies, for r ≥ p′ and 1
s
= 1

r
+ 1

p
, that

P ∈ L(Lr
U(R

N), Ls
U(R

N)), ‖P‖L(Lr
U (RN ),Ls

U (RN )) ≤ C‖m‖Lp
U (RN ).

ii) If moreover m ∈ L̇p
U(R

N) we have for r ≥ p′ and 1
s
= 1

r
+ 1

p
, that

P ∈ L(L̇r
U(R

N), L̇s
U(R

N)), ‖P‖L(L̇r
U (RN ),L̇s

U (RN )) ≤ C‖m‖Lp
U (RN ).

Then Theorem 2.1 leads to
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Lemma 6.6 Let m ∈ L̇p
U(R

N) be such that ‖m‖L̇p
U (RN ) ≤ R0, with p > N

4
. Then for any

1 < q < ∞ the problem
{

ut +∆2u = m(x)u x ∈ RN , t > 0
u(0) = u0 in RN

defines an analytic semigroup S(t) in L̇q
U(R

N) that satisfies

‖S(t)u0‖L̇r
U (RN ) ≤

Mr,qe
µt

t
N
4
( 1
q
− 1

r
)
‖u0‖L̇q

U (RN ), t > 0, u0 ∈ L̇q
U(R

N)

for 1 < q ≤ r ≤ ∞ with Mq,r and µ depending on m only through R0.
Furthermore, if

mε → m in L̇p
U(R

N), p >
N

4

then for every 1 < q ≤ r ≤ ∞ and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖Sε(t)− S(t)‖L(L̇q(RN ),L̇r(RN )) ≤
C(ε)

t
N
4
( 1
q
− 1

r
)
, ∀ 0 < t ≤ T.

Proof. With Zα(r) := Lr(RN), α(r) = −N
4r

∈ I := [−N
4
, 0], we know from Lemma 6.4

that

‖S∆2(t)‖L(Zβ ,Zα) ≤
C

tα−β
β ≤ α α, β ∈ I, 0 < t ≤ 1

and we read Lemma 6.5 as P ∈ L(Zα, Zβ), for α = −N
4r

and β = α − N
4p

= −N
4s

for

any 0 ≥ α ≥ α0 = −N
4
, with 0 ≤ α − β = −N

4r
+ N

4s
= N

4p
< 1 since p > N

4
and

‖P‖L(Zα,Zβ) ≤ C‖m‖L̇p
U (RN ).

Then we apply Theorems 2.1 and 2.2 for each α, β as above. Note that, arguing as in
Lemma 5.5, γ and γ′ can be taken in the whole interval I = [−N

4
, 0].

Finally, the analyticity will follow from Theorem 6.8 below with a = 0.

Now, we consider more general perturbations, similar to the perturbations in (5.4)
with b = 0, that is,

Pau = d(x)Dau (6.9)

with d ∈ L̇p
U (R

N) and a ∈ N. Note that since the uniform Bessel spaces are not reflexive
(even for q = 2), the negative spaces cannot be described as dual spaces, and thus, the
approach in Proposition 5.9 can not be carried out for b 6= 0 in uniform spaces.

Proposition 6.7 Let Pau = d(x)Dau with d ∈ L̇p
U(R

N ), a ∈ {0, 1, 2, 3} and let s ≥ a,
σ ≥ 0. Then for 1 < q < ∞, if

(s− a− N

q
)− + (σ − N

q′
)− ≥ −N

p′
(6.10)

we have

Pa ∈ L(Ḣs,q
U (RN), Ḣ−σ,q

U (RN)), ‖Pa‖L(Ḣs,q
U (RN ),Ḣ−σ,q

U (RN )) ≤ C‖d‖L̇p
U (RN ).
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Proof. First note that u ∈ Ḣs,q
U (RN), thus Dau ∈ Ḣs−a,q

U (RN). Because of (6.10) we can
choose r, ρ ≥ 1 such that (s− a− N

q
)− ≥ −N

r
and (σ − N

q′
)− ≥ −N

ρ′
with 1

ρ
= 1

r
+ 1

p
(and

so r ≥ p′).
Therefore we can use the inclusion Ḣs−a,q

U (RN) →֒ L̇r
U (R

N) and then part ii) in Lemma
6.5 gives Pau ∈ L̇ρ

U(R
N) and finally, because of Proposition 6.1, we use the inclusion

L̇ρ
U(R

N) →֒ Ḣ−σ,q
U (RN ) and we get the result.

With this, we can obtain the main result for perturbations of (6.8).

Theorem 6.8 Let d ∈ L̇p
U (R

N) such that ‖d‖L̇p
U (RN ) ≤ R0 with p > N

4−a
, a ∈ {0, 1, 2, 3},

then for any 1 < q < ∞ and any Pa as in (6.9) there exists an interval I(q, a) ⊂ (−1+ a
4
, 1)

containing (−1 + a
4
+ N

4p
, 1 − N

4p
), such that for any γ ∈ I(q, a), we have a continuous,

analytic semigroup, SPa(t) in the space Ḣ4γ,q
U (RN), for the problem

{

ut +∆2u+ d(x)Dau = 0, x ∈ RN , t > 0
u(0) = u0 in RN .

Moreover the semigroup has the smoothing estimate

‖SPa(t)u0‖Ḣ4γ′,q
U (RN )

≤ Mγ′,γe
µt

tγ′−γ
‖u0‖Ḣ4γ,q

U (RN ), t > 0, u0 ∈ Ḣ4γ
U (RN)

for every γ, γ′ ∈ I(q, a) with γ′ ≥ γ, and

‖SPa(t)u0‖L̇r
U (RN ) ≤

Mq,re
µt

t
N
4
( 1
q
− 1

r
)
‖u0‖L̇q

U (RN ), t > 0, u0 ∈ L̇q
U(R

N )

for 1 < q ≤ r ≤ ∞ with some Mγ′,γ, Mq,r and µ ∈ R depending on d only through R0.
For each Pa, the interval I(q, a) is given by

I(q, a) = (−1 +
a

4
+

N

4
(
1

p
− 1

q′
)+, 1−

N

4
(
1

p
− 1

q
)+) ⊂ (−1 +

a

4
, 1).

Finally, if, as ε → 0

dε → d in L̇p
U (R

N), p >
N

4− k

then for every T > 0 there exists C(ε) → 0 as ε → 0, such that

‖SPε(t)− SP (t)‖L(Ḣ4γ,q
U (RN ),Ḣ4γ′,q

U (RN ))
≤ C(ε)

tγ′−γ
, ∀ 0 < t ≤ T

for all γ, γ′ ∈ I(q, a, b), γ ≥ γ′ and for all 1 < q ≤ r ≤ ∞,

‖SPε(t)− SP (t)‖L(L̇q
U (RN ),L̇r

U (RN )) ≤
C(ε)

t
N
4
( 1
q
− 1

r
)
, ∀ 0 < t ≤ T.

Proof. The proof is as in proof of Proposition 5.10 but using Proposition 6.7 instead of
Proposition 5.9. The analyticity comes again from part i) in Theorem 2.3.

Remark 6.9 We can replace Da in (6.9) by (−∆+ cI)a/2 with 0 ≤ a < 4 as in Theorem
5.12.
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7 Some other higher order equations

In this section we show that all the results in Sections 4, 5 and 6 above also hold true
for other natural powers of suitable operators, and in particular, for any power of the
Laplacian, (−∆)m, with m ∈ N. The proofs below have barely no changes with respect
to the ones above, and we now detail the main points for them. We start reviewing the
abstract results in Section 4.

Proposition 7.1 Proposition 4.1 remains true for Am
0 , m ∈ N, as long as the sector S0,φ

for A0 has an opening angle φ < π
2m

.

In fact, this is the original result in Theorem 10.5 in [12].
Now, for the interpolation scale, similarly to Propositions 4.3, we get

Proposition 7.2 Let A0 ∈ H(E1, E0) and assume Am
0 := A0 ◦ · · · ◦ Am ∈ H(Em, E0),

m ∈ N. Then on the interpolation scale Xα = Emα with α ∈ R we have Am
α := Aα ◦

· · · ◦ Aα+m ∈ H(Xα+m, Xα) and Am
0 defines a semigroup SAm

0
(t) in {Xα}α∈R such that

SAm
0
(t)|Xα = e−Am

α t and

‖SAm
0
(t)‖L(Xβ ,Xα) ≤

C(α− β)

tβ−α
eµt t > 0, α, β ∈ R, α ≥ β

for any µ > type(Am
0 ). The constant C(α− β) is bounded for α, β in bounded sets of R.

If E0 is reflexive, the negative side of the scale can be described as

X−α = (X♯
α)

′ and Am
−α = (Am♯

α )′, α > 0

and it holds that
e−Am

−αt = (e−Am♯
α )′.

Furthermore, the problem
{

ut + Am
α u = 0, t > 0

u(0) = u0 ∈ Xα

for α ∈ R has a unique solution u(t) = SAm
0
(t) = e−Am

α tu0.

On the other hand, for the fractional power scale, as in Proposition 4.4, we get

Proposition 7.3 Let A0 ∈ H(E1, E0) and assume Am
0 := A0 ◦ · · · ◦ Am ∈ H(Em, E0).

Also, fix N ∈ N. Then on the fractional power scale Yα = Fmα with α ≥ −N we have
Am

α := Aα ◦ · · · ◦ Aα+m ∈ H(Yα+m, Yα) and Am
0 defines a semigroup SAm

0
(t) in {Yα}α≥−N

such that SAm
0
(t)|Yα = e−Am

α t and

‖SAm
0
(t)‖L(Yβ ,Yα) ≤

C(α− β)

tα−β
eµt t > 0, α ≥ β ≥ −N

for any µ > type(Am
0 ). The constant C(α− β) is bounded for α, β in bounded sets of R.

42



If E0 is reflexive, the negative side of the scale can be described as

Y−α = (Y ♯
α)

′ and Am
−α = (Am♯

α )′ α > 0.

and it holds that
e−Am

−αt = (e−Am♯
α )′.

Furthermore, the problem
{

ut + Am
α u = 0, t > 0

u(0) = u0 ∈ Yα

for α ≥ −N has a unique solution u(t) = SAm
0
(t) = e−Am

α tu0.

The proofs for both propositions follow the same steps as for Propositions 4.3 and 4.4,
but replacing ∆2 by (−∆)m. Note that when shifting the operator Ã0 = A0 + cI, the
perturbation P obtained in the proof of Propositions 4.3 and 4.4 is different (given by the
binomial theorem), but the same argument can be repeated.

We now consider powers of the Laplacian in the standard Lq(RN) spaces. The following
result is similar to Lemma 5.1. Note that (−∆)m has bounded imaginary powers (see
Remark 4.5), thus the fractional and interpolation scales coincide.

Lemma 7.4 For 1 < q < ∞, in E0 = Lq(RN) the operator (−∆)m with domain Em =
D(−∆m) = H2m,q(RN), satisfies the estimate

‖((−∆)m − λ)−1‖Lq(RN ) ≤ M |λ|−1 for all λ ∈ S0,mφ

where φ > 0 is arbitrarily small. Furthermore σ((−∆)m) = [0,∞) and therefore

type((−∆)m) = 0.

The proof is exactly as the one in Lemma 5.1, but using Proposition 7.1 instead of
Proposition 4.1. This information, together with Proposition 7.2 leads to

Lemma 7.5 Consider the problem
{

ut + (−∆)mu = 0 x ∈ RN , t > 0
u(0) = u0 in RN (7.1)

with m ∈ N.
i) Then for 1 < q < ∞, (7.1) defines an analytic semigroup, S(−∆)m(t), in the scale
Xα = Emα = H2mα,q(RN), α ∈ R, such that for any µ0 > 0 there exists C(α − β) such
that

‖S(−∆)m(t)‖L(H2mβ,q(RN ),H2mα,q(RN )) ≤
C(α− β)

tα−β
eµ0t t > 0, α, β ∈ R, α ≥ β.

ii) The analytic semigroup, S(−∆)m(t), in Lq(RN ), 1 < q < ∞, satisfies that for any
µ0 > 0 there exists Mq,r such that

‖S(−∆)m(t)‖L(Lq(RN ),Lr(RN )) ≤
Mq,r

t
N
2m

( 1
q
− 1

r
)
eµ0t t > 0

for 1 < q ≤ r ≤ ∞.
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Note that the proof in Lemma 5.2 can be carried out now taking (−∆)m instead of ∆2 in
the scale of spaces.

Also note that the solution of problem (7.1) can also be described as the convolution of
the initial data with the fundamental kernel for the m–Laplacian operator, which satisfies
suitable Gaussian bounds; see e.g. [8, 6].

We can now add the perturbations to (7.1), as in Theorem 5.10.

Theorem 7.6 Let a, b ∈ N with k = a + b ≤ 2m − 1 and Pa,b be as in (5.4). Assume
that ‖d‖Lp

U (RN ) ≤ R0 with p > N
2m−k

. Then for any 1 < q < ∞ and such Pa,b there exists

an interval I(q, a, b) ⊂ (−1 + a
2m

, 1− b
2m

) containing (−1+ a
2m

+ N
2mp

, 1− b
2m

− N
2mp

), such

that for any γ ∈ I(q, a, b), we have a strongly continuous, analytic semigroup, SPa,b
(t) in

the space H2mγ,q(RN), for the problem

{

ut + (−∆)mu+Db(d(x)Dau) = 0, x ∈ RN , t > 0
u(0) = u0 in RN .

Moreover the semigroup has the smoothing estimates

‖SPa,b
(t)u0‖H2mγ′ ,q(RN ) ≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H2mγ,q(RN ), t > 0, u0 ∈ H2mγ,q(RN)

for every γ, γ′ ∈ I(q, a, b) with γ′ ≥ γ, and

‖SPa,b
(t)u0‖Lr(RN ) ≤

Mq,re
µt

t
N
2m

( 1
q
− 1

r
)
‖u0‖Lq(RN ), t > 0, u0 ∈ Lq(RN)

with 1 < q ≤ r ≤ ∞ and some Mγ′,γ, Mq,r and µ ∈ R depending on d only through R0.
Furthermore, the interval I(q, a, b) is given by

I(q, a, b) = (−1 +
a

2m
+

N

2m
(
1

p
− 1

q′
)+, 1−

b

2m
− N

2m
(
1

p
− 1

q
)+).

Finally, if

dε → d in Lp
U(R

N), p >
N

2m− k

then for every 1 < q < ∞ and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖SPε(t)− SP (t)‖L(H2mγ,q(RN ),H2mγ′ ,q(RN )) ≤
C(ε)

tγ′−γ
, ∀ 0 < t ≤ T

for all γ, γ′ ∈ I(q, a, b), with γ′ ≥ γ and

‖SPε(t)− SP (t)‖L(Lq(RN ),Lr(RN )) ≤
C(ε)

t
N
2m

( 1
q
− 1

r
)
, ∀ 0 < t ≤ T

for all 1 < q ≤ r ≤ ∞.

44



Note that now, the amount of possible combinations of perturbations becomes enor-
mous, however, they can be combined just as explained in Remark 5.11.

We finally turn into the uniform spaces L̇q
U(R

N). First of all, we check the information
about the spectrum and resolvent set for (−∆)m in L̇q

U(R
N ), with the same ideas as in

Proposition 6.3, that is, using Proposition 7.1 and Remark 4.2.

Lemma 7.7 For 1 < q < ∞, the operator (−∆)m in the space E0 = L̇q
U(R

N) with domain
Em = D((−∆)m) = Ḣ2m,q

U (RN), satisfies the estimate

‖((−∆)m − λ)−1‖L̇q
U (RN ) ≤ M |λ|−1

for all λ in a sector S0,mφ as in (3.1) for φ > 0 arbitrarily small.
Furthermore, σ((−∆)m) = [0,∞), and thus, type((−∆)m) = 0.

Again, this information, together with Proposition 7.2 leads to

Lemma 7.8 Consider the problem
{

ut + (−∆)mu = 0 x ∈ RN , t > 0
u(0) = u0 in R

N .

i)Then for each 1 < q < ∞, (7.8) defines an analytic semigroup, S(−∆)m(t), in the scale

Xα := Emα = Ḣ2mα,q
U (RN), α ∈ R, such that for any µ0 > 0 there exists C such that

‖S(−∆)m(t)u0‖Ḣ2mα,q
U (RN ) ≤

Mα,βe
µ0t

tα−β
‖u0‖Ḣ4β,q

U (RN ), t > 0, u0 ∈ Ḣ4β,q
U (RN)

with α, β ∈ R, α ≥ β.
ii) The analytic semigroup S(−∆)m(t), in L̇q

U(R
N), 1 < q < ∞, satisfies

‖S(−∆)m(t)u0‖L̇r
U (RN ) ≤

Mq,re
µt

t
N
2m

( 1
q
− 1

r
)
‖u0‖L̇q

U (RN ), t > 0, u0 ∈ L̇q
U(R

N )

for any 1 < q ≤ r ≤ ∞ and µ0 and some Mq,r > 0.

Then adding perturbations as above, we have

Theorem 7.9 Let a ∈ N, a ≤ 2m − 1 and ‖d‖L̇p
U (RN ) ≤ R0 with p > N

2m−a
, then for

any 1 < q < ∞ and any Pa as in (6.9) there exists an interval I(q, a) ⊂ (−1 + a
2m

, 1)
containing (−1+ a

2m
+ N

2mp
, 1− N

2mp
), such that for any γ ∈ I(q, a), we have a continuous,

analytic semigroup, SPa(t) in the space Ḣ2mγ,q
U (RN), for the problem

{

ut + (−∆)mu+ d(x)Dau = 0, x ∈ RN , t > 0
u(0) = u0 in RN .

Moreover the semigroup has the smoothing estimate

‖SPa(t)u0‖Ḣ2mγ′ ,q
U (RN )

≤ Mγ′,γe
µt

tγ′−γ
‖u0‖Ḣ2mγ,q

U (RN ), t > 0, u0 ∈ Ḣ2mγ,q
U (RN)
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for every γ, γ′ ∈ I(q, a) with γ′ ≥ γ, and

‖SPa(t)u0‖L̇r
U (RN ) ≤

Mq,re
µt

t
N
2m

( 1
q
− 1

r
)
‖u0‖L̇q

U (RN ), t > 0, u0 ∈ L̇q
U(R

N)

with 1 < q ≤ r ≤ ∞ and some Mγ′,γ, Mq,r and µ ∈ R depending on d only through R0.
For each Pa, the interval I(q, a) is given by

I(q, a) = (−1 +
a

2m
+

N

2m
(
1

p
− 1

q′
)+, 1−

N

2m
(
1

p
− 1

q
)+) ⊂ (−1 +

a

2m
, 1).

Finally, if

dε → d in L̇p
U(R

N), p >
N

2m− k

then for every 1 < q < ∞ and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖SPε(t)− SP (t)‖L(Ḣ2mγ,q(RN ),Ḣ2mγ′ ,q(RN )) ≤
C(ε)

tγ′−γ
, ∀ 0 < t ≤ T

for all γ, γ′ ∈ I(q, a, b), γ ≥ γ′ and

‖SPε(t)− SP (t)‖L(L̇q(RN ),L̇r(RN )) ≤
C(ε)

t
N
2m

( 1
q
− 1

r
)
, ∀ 0 < t ≤ T

for all 1 < q ≤ r ≤ ∞.

The proofs of both Lemma 7.8 and Theorem 7.9 follow the proofs of Lemma 6.4 and
Theorem 6.8, just replacing ∆2 by (−∆)m as the order of the operator involved.
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graphs in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1995. Abstract linear
theory.

[2] H. Amann, M. Hieber, and G. Simonett. Bounded H∞-calculus for elliptic operators.
Differential Integral Equations, 7(3-4):613–653, 1994.

[3] J.M. Arrieta, J. W. Cholewa, T. Dlotko, and A. Rodŕıguez-Bernal. Linear parabolic
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