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Abstract

Using abstract parabolic arguments, we solve the parabolic bi-Laplacian equa-
tion in several spaces simultaneously. We can add perturbations to the problem,
obtaining a perturbed semigroup, which gives the solution in the scale of spaces,
and showing the robustness of the result with respect to the perturbation. For
introducing the perturbations, we construct an existence and regularity theory for
the unperturbed parabolic bi-Laplacian equation and then add the perturbations.
Finally, following the same methods, we consider the problem in bigger space, the
uniform Bessel-Lebesgue spaces, and also higher order powers of the Laplacian.
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1 Introduction

In this paper we address the solvability of some fourth order linear parabolic equations in
RY. More precisely, we consider

u + A%u + Pu =0, ze€RN t>0
N (1.1)
u(0) = uyg in R

*Partially supported by Project MTM2009-07540, MEC and GR58/08 Grupo 920894, UCM, Spain.



with u a suitable initial data defined in RY and P a linear perturbation. We will consider
space dependent perturbations of the form Pu:= )" , P,yu with

Pyyu = D(d(x)Du)  x€RY (1.2)

for some a,b € {0, 1,2, 3} such that a+b < 3, where D%, D’ denote any partial derivatives
of order a,b, and a given function d(x) with z € RY.

Our main goal is to consider in (L)) some large classes of initial data uy in RY as
well as to consider wide classes of perturbations. For the latter we will consider classes of
coefficients d(x) with weak integrability properties. More precisely, we will assume below
that the coefficient d(z) belongs to some locally uniform space LF(RY), 1 < p < oo,
composed of the functions f € LI (RY) such that there exists C' > 0 such that for all
To € RN

/ IfIP<C
B(zo,1)

endowed with the norm ||f||LpU(RN) = sup,,crn || 122 (B@o1))-

As for the initial data we will consider the standard Lebesgue space, LI(RY), 1 < ¢ <
00, or Bessel-Lebesgue spaces H*(RY), with 1 < ¢ < 0o, @ € R and even uniform Bessel
spaces Hy/(RY) to be introduced below.

Given such classes of initial data and perturbations we want to find suitable smoothing
estimates on the solutions as will be explained below.

Note that for P = 0 the solution of problem (ILT]) can be described as the convolution
of the initial data with the self-similar fundamental kernel for the bi-Laplacian operator,
which satisfies suitable Gaussian bounds; see e.g. [9, [10] and [8] [6].

Recently, results in Bessel-Lebesgue spaces have been proved in [7] for P # 0. By
means of resolvent estimates for A? 4+ P, the authors proved the well possedness of (L))
with Pu = d(z)u, that is a perturbation with a, b = 0. They also found suitable smoothing
estimates as the ones we will find below.

Here, instead of relying on elliptic resolvent estimates for operators A? + P, with P as
in (L2)), we rely on a more abstract “parabolic” argument developed in [14] and applied
there to parabolic equations with second order elliptic operators. With this approach
we consider a simpler problem, the one with P = 0, that we can solve in several spaces
simultaneously. That is, we consider a semigroup of solutions defined on a scale of spaces.
For such simpler problem we start by proving suitable smoothing estimates on the spaces
of the scale. Then we consider a suitable perturbation, P, that acts between two spaces on
the scale. With these ingredients the abstract results in [14] allow to obtain a perturbed
semigroup that corresponds to the equation with P # 0. Such perturbed semigroup
inherits some of the smoothing estimates of the original one in some of the spaces of the
scale which are determined by the perturbation P itself.

Another important result that we are able to stablish using the tools developed in [14]
is that of the robustness with respect to the perturbation. In this direction we are able to
prove two important results. First, we show that all constants involved in the smoothing
estimates of the perturbed semigroups, including the exponential bounds on them, are



bounded uniformly for bounded families of perturbations (i.e. for families of coefficients
d(z) as in (L2) which are bounded in the uniform space Lf,(RY)). Second, we prove that
the perturbed semigroups obtained as above, continuously depend on the perturbation.
That is, if the coefficients d(z) depend on a parameter and converge in the space LY, (RY),
then the corresponding semigroups converge in norm.

As mentioned above this approach was applied in [I4] to second order parabolic equa-
tions in bounded and unbounded domains, allowing perturbations in the equation and in
the boundary conditions.

In this paper however we carry out these ideas to fourth order parabolic equations in
RY as in (II)). Hence we need to develop an existence and regularity theory in suitable
scales of spaces for the parabolic bi-Laplacian equation, i.e. (LI]) with P = 0, in order
to later introduce the perturbations. For this we use as much as informations as we have
about the heat equation u; — Au = 0, in RY and use that A? is the square operator of
—A. In particular we show that the same scales of spaces available for —A can be used
for (II)). In such scales suitable smoothing estimates for (II]) with P = 0 are obtained.

We now state one of the main results that we prove below, see Theorem [E.I0. Note that
this result applies in the Bessel-Lebesgue scale. A similar one, with technical differences,
holds in the uniform Bessel scale, see Theorem [6.8]

Theorem 1.1 Let P, be as in (L2) with k,a,b € {0,1,2,3}, k = a+b. Assume that
1|y @y < Ro with p > 3%

Then for any 1 < q < oo and such Py, there exists an interval I(q, a,b) C (=1+7, 1—2)
containing (—1 + ¢ + %, 1-%-— 4%), such that for any v € 1(q,a,b), we have a strongly

continuous, analytic semigroup, Sp, ,(t) in the space H*Y4(RN), for the problem

ug + A%u + D(d(x) D) =0, xRN t>0
u(0) = g in RV,

Moreover the semigroup has the smoothing estimates

ut
Mvwe

= [uoll rava@ny, >0, up € H7(RY)

||SPa,b(t)u0||H4'Y/7‘I(RN) <

for every v,y € I(q,a,b) with v > ~, and

t
M, et

ISP, ,()uoll r@yy < (T,
t4 q r

|woll Loy, >0, up € Lq(]RN)

for1 <q <r <oo, with some My, My, and i € R depending on d only through Ry.
Furthermore, the interval I(q,a,b) is given by

a N, 1 1 b N,1 1

I(g,a,0) = (=1+ 7 + 4(1—)—?)%1—1—2(———%)-

Finally, if
d. —d in LL(RY), p>-—v



then for every 1 < q < oo and T > 0 there exists C(¢) — 0 as ¢ — 0, such that

Cle)
||SP5 (t) - SP(t)||[:(H4%q(RN)7H4’Y,7q(RN)) S t,y,_,y, V 0 < t S T
forall v,~" € I(q,a,b), v >~" and for any 1 < q<r < oo
Cle
1S5, (£) = Sp(t) | ezn(ey vy < % VO<t<T
4 \q r

Observe that in the theorem above just one perturbation F,; is considered for the
bi-Laplacian operator. Also note the ranges of spaces for which we can solve the equation
are determined by the base space in terms of 1 < ¢ < oo, the integrability p of the coeffi-
cient d(z) and the order of derivatives a,b. Several perturbations can be thus combined
together, although not all combinations are allowed. We discuss below a general proce-
dure to determine whether or not two given perturbations can be combined together; see

Remark B.TT]

The paper is organized as follows. In Section 2l we recall the main results in [14]
that will be used in this paper. Note that Theorem is stated containing a case not
considered in [14] but that will be required further below.

In Section [ we collect the construction of suitable scales of spaces for sectorial opera-
tors (that is, negative of generators of analytic semigroups) in Banach spaces. For this we
follow the general constructions in [I] and construct both an interpolation/extrapolation
scale and a fractional power scale. On these scales the operator defines a strongly con-
tinuous analytic semigroup with suitable smoothing estimates, see Propositions and
B.2

In Section M| we assume that a sectorial operator as in Section [3 is such that its
square is also sectorial. Then we show that both the interpolation/extrapolation scale
of the operator and its square coincide after a suitable labeling. We also obtain the
corresponding smoothing estimates for the semigroup of the square of the operator; see
Propositions and 4] In this section the results in [12] will play an essential role.

Then we apply all these abstract results to (ILT]). In Section Bl we prove that A? defines
an analytic semigroup in the scales of Lebesgue and Bessel-Lebesgue spaces which satisfy
suitable smoothing estimates; see Lemma [5.2] Then using the results in Section [2] we are
able to add perturbations to the equation along the lines described above, see Lemma [5.5]
Lemma [5.7 and Theorem [B.I0L Some extension to fractional-like derivatives in (L2)) can
be found in Theorem In this case a, b are nonnegative real and 0 < a+ b < 4.

The same strategy is carried out in Section [l for (IT]) in the uniform Bessel-Lebesgue
scale. Such scale was used for linear and nonlinear heat equations in [3], [5]. Such spaces
are useful because, among other properties, they are very large spaces whose functions do
not satisfy any smallness behavior at infinity and contain the standard Bessel-Lebesgue
spaces as closed subspaces. After some result on these spaces in Proposition that
complements the ones in [3], we obtain resolvent estimates for the Laplacian operator
that prove that it is sectorial and that allows us to use the results in Section M to handle
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the bi—Laplacian in uniform spaces. Then in Lemma we show that the bi-Laplacian
parabolic equation defines an analytic semigroup with suitable smoothing estimates in
the uniform Bessel-Lebesgue scale. Then in Lemma and Theorem we introduce
the perturbations and prove an analogous result to Theorem [[LT]in this scale. Note that
since uniform spaces are not reflexive (even for ¢ = 2) we can only consider the case b = 0
in (L2) and in Theorem [Tl see Theorem [6.8

Finally, in Section [[l we show how to obtain all the results in Sections 4 [l and [@ for
other powers of the Laplacian (—A)™, m € N as the main part in the elliptic operator.

2 Some previous results

We recall some results from [I4] that will be needed later on. Let {X,}aer be a family
of Banach spaces, with « in an interval I, endowed with a norm || - ||,. Let S(¢) be a
semigroup on a scale { X, }aers, such that

MO(ﬁv O‘)

1SOlsa = 15ONecsxa) = —oz5— ¥V 0<t <1 (2.1)

for all o, 5 € I, @ > B for some constant My(f3, ) > 0.
Now, assume that for some fixed o > (3, with 0 < a — 8 < 1 we have a linear
perturbation satisfying

P e E(Xa,Xg). (2.2)

0<a-B<l. (2.3)
We will sometimes use “nested” spaces, that is, for all o, 8 € I with o > 3 we have

X, C Xﬁ (24)

with continuous inclusion and the norm of the inclusion will be denoted |[i||q . This will
be explicitly stated when used.
Consider the perturbed problem

u(t; ug) = S(t)ug + /Ot S(t — 7)Pu(T;up) dr, t>0, (2.5)

which corresponds to solving the problem wu; + Au = Pu, where —A is the infinitesimal
generator of the semigroup S(t).

The following result is taken from [I4, Proposition 10] and states the existence of a
perturbed semigroup defined by (2.5).

Theorem 2.1 Assume (21), (Z2), and (Z3). Then for every Ry > 0 and every

P e ﬁ(Xa,Xg) with ”PHK(XaJ(B) < Ry



and for every v,~" € I such that

vEE()=(a—1a], Y eERB)=[BL+1), =7 (2.6)

there exist constants w = w(v,7', Ry) > 0 and My = My(vy,~', Ro) such that, fort > 0,
there exists a unique solution of (2.4), which defines a mapping from X, into X, as

Sp(t)ug :== u(t;up), forall t>0

such that
SO0l < Mot Duglly, 7 > 7. 2.7

In particular for any v € [5,al, Sp(t) € L(X,) and it is a semigroup of linear contin-
uous operators in X.,.
The same is true for any v € E(«), if the scale is nested.

Now we turn into the continuity of the perturbed semigroup with respect to the per-
turbation. With the setting above, assume that we have two perturbations

P e (X, Xp), 1=1,2, 0<a—-p<L.
Our goal is then to compare semigroups Sp,. (t), i = 1,2. Hence assume
| Pillc(xaxs) < R i=1,2
for some Ry > 0. Also, consider the existence and regularity intervals as in (2.0)
yeEE()=(a—1,a], A eRPB)=[B6+1), =7

Consider then an initial data uy € X,, and the corresponding solutions of the per-
turbed problem

t
u'(t;up) = Sp,(t)ug = S(t)ug + / S(t — )Pt (15 u0) dr, t> 0.
0

Then we have the following continuity result, see [14, Theorem 14].

Theorem 2.2 With the notations above, for any Ry > 0, there exists a sufficiently small
Ty such that for all perturbations Pi, i = 1,2, such that || P z(x..x5) < Ro,

L<T07 RO)

1Sp, (1) = Sp, (Dl 2(x,.x,) < Pt 1P — Pall2(xa.xs)5 forall 0<t<T,

and for every T > Tj

||Sp1 (t) — SP2(t)||£(X%X7/) S L(T, To, RO)HPl — PZHE(XQ,Xg)a fO’f’ all TO <t S T



Finally we will also need the following result about the analyticity of the semigroup
defined by (Z3]). Note that the first part of the Theorem below is taken from [14, Theorem
12], but the second part we introduce here will be also needed further below.

Theorem 2.3 Assume the scale is nested, that is, (2.4)), and that for any v € I, if —A
denotes the infinitesimal generator of S(t) in X, then its domain is given by D(A) =
Xot1-
Also assume the scale satisfies either one of the following interpolation properties:
i) IfY is a Banach space and T € L(X,,Y) andT € L(X,,Y) thenT € L(Xoy+1-0)y,Y)
for 6 €[0,1] and
Il ety ayy < 1712 ITIEE, 3, (2.5)

ii) The following condition is satisfied for any v,7 € I and 0 < 0 < 1

< Cllull, lullx) (2.9)

||u||X@'v+(1 0y —

Finally, as in Theorem [21], assume that for some fixred o > 3, with 0 < o — [ < 1 we
have a linear perturbation satisfying

P e L(Xa,Xg) with Hp”ﬁ(XmXB) S RQ.

Then, there exists some 0 < wy = wo(Ry) such that for any Re(A) > wy and any
v € (a—1,8) the operator A+ X — P, between X1 and X, is invertible and

_ C
H(A—'—)\[ — P) 1|’£(X7,X7) S W, R€<)\> Z Wo

and
H(A+ A = P) e xy <C Re(A) > wo

where C' s independent of P and \.
In particular, for every v € (o — 1, 3), the semigroup Sp(t) in X, in Theorem 21 is
analytic.

Proof. The proof of part i) can be found in [I4] Theorem 12].
Under the assumption in ii) the same proof remains unchanged up to the point where
for all v € I the following inequalities are obtained

_ C
1A+ M) e, x,) < B Re(A) = w

<
B}
HA+ N ewe, x < C Re(h) > w.

1A+ 27201 X000) < Re(A) = w (2.10)



At this point we proceed as follows. For any v € I and 4 € (7,7 + 1) we have that
v+ 1€ (7,9 + 1) and thus, using (2I0) and (Z9), we get for Re(\) > w

1 S

_ _ 11— C _ C
1A + 2 ullyr < A+ N Hull5I1H(A + 2 559 < WHquHuH% ?= WHU!H

for 6 such that v+ 1 =605+ (1 —0)(7 + 1), that is, 6 =5 — . Hence we get

- C
1A+ X) M 20x,x,40) < VR Re(\) > w.

Now the proof concludes as in [14, Theorem 12]. m

3 Scales of spaces for sectorial operators

In this section, we construct suitable scales of spaces for sectorial operators in Banach
spaces. These constructions follow [I] and, in view of the applications later in this paper,
we particularize for the scales of complex interpolation—extrapolation spaces and the scale
of fractional power spaces.

Following [1], let Ey, E; be Banach spaces with continuous inclusion E; C FEjy and
consider the class H(FE}, Ey) of linear operators in Ey, with domain E; such that if Ay €
H(E,, Ey), then —Ag generates a strongly continuous analytic semigroup in Ep, {e~0!; ¢ >

0}.

For generators of analytic semigroups we have the following well known definitions.

Definition 3.1
i) [T1l, Definition 1.5.1 pg 18]. A closed operator in a Banach space Ey, Ag, with domain
D(Ay), is sectorial if there exists a sector

Seo={2€C:0¢<larg(z—a)| <m, z#a} C p(Ap) (3.1)
for some a € R and ¢ € (0,7/2), such that
(Ao — N Hg, < MIX—al|™? for all X € S, 4. (3.2)

ii)[1, Section 1.2]. H(Ey, Ey) = Uw>1 H(E1, Eo, k,w), where Ay € H(Ey, Ey, k,w) if
w>0
—w+ Ao € Lis(Ey, Ey) and

A = Vs
= Dllelle + lelle =™

Re(\) < —w x € Fy. (3.3)

The following result establishes the equivalence between both definitions.

Proposition 3.2 Both definitions i) and i1) in Definition[31] are equivalent.



Proof. i)=ii)
Define F := D(Ap) with the graph norm, that is

- lle =1 llao) = I - [z + | Ao()ll -
Note that [I, Remark 1.2.1 pg 11] proves ([B.3]) provided we prove

AMxllg, < E|(Ag — Nz &, Re(MN) < —w x € by

Thus from [B2) we get
MIX = a|||z|| g, < (Ao — Nz g, forall A € S, 4, © € D(Ay) = E.

Now, if we take w > 0 such that —w <Re(a), then —w € p(Ay), thus —w+A, € Lis(Ey, Ey)

and |)\‘i|a\ < M for all Re()\) < —w. Hence

MMM|z||lg < (Ao — M|z, Re(N) < —w x € b

ii)=1)

For proving this, we first use Proposition [I} 1.1.4.1, pg 15|, which read in terms of our
notation, states that if Aqg € H(FE1, Fo, k,w) then there exist K > 1, w > 0, —wy € (—w, 0)
and 0 € (0,7/2) such that we have that

1 [(Ao — Nl 5,

— < < Bk x € E;
56~ Ml g, + [l e,

for A € ¥_,,, 0 = {|arg(z —wo) < 0+ 7/2|} C p(Ay).
Note that taking a = —wp and ¢ = 7 — 0 we define S, 4 = ¥_,, 9 and we just need to
check that
(Ao =27l € MIA =" A€ S

From L < 4o=Yalleg

5H—mwegetfor)\esav¢

ClA[llzllo < [[(A0 = Nzllo = € B

which, taking y = (Ag — \)z, reads
_ C
1(A0 =N ylls, < WHyHEo

and since % < Cforall \ e Sa,6, We get

cC M
Ag— N7t < — = .



Note that for Ay € H(E4, Ey), we define
type(Ap) = —inf{Re(c(Ao))}

and observe that this quantity will play an important role in the estimates for semigroups
below, see e.g. ([BI2). For details on this definition see [I pg. 17, pg. 34 and 11.5.1.2, pg.
69], noting that there, the notation is slightly different.

In what follows we will momentarily assume that

0 € p(Ay). (3.4)

With this it can be proved that the norm || - || g, is equivalent ||Ag - ||g,, and we can start
a recurring construction as follows.

Consider Fy := D(A;) = {u € Ey, Aju € E1} where Ay : Ey — Fj is the realization
(and also the closure) of Ay in F; and endowed with the norm || - ||, = |41 - || &, -

We can iterate this process to get a discrete scale of Banach spaces {E,,n € N} and
the realizations of Ay in E,, which we denote by A,, satisfy A, € H(E, .1, E,) and are
isometric isomorphisms from E,,,; — E,, see [I, V.1.2.1, pg. 256].

For the construction of the negative side of the scale, define F_; as the completion
of Fy relatively to the norm || - ||z, := ||Ay" - ||z, which is a Banach space such that
Ey — E_; densely and A_; is the unique continuous extension of Ay, which is an isometric
isomorphism from Ey — F_;. This extension is called again the realization of Ag in E_;.

Again, we iterate the process of completion with the norm generated by the new
operator and we get a negative discrete scale {E_,,,n € N} and A_,, € H(E_,.11, E_,),
where A_,, denotes the realization of Ag, the closure of A_,,; in E_,, and is an isometric
isomorphism from E_, 1 — E_, see [I, V.1.3.2, pg. 263] and the comments on [I pg.
264].

So we have a two-sided discrete nested scale ([I, V.1.3.4, pg 264]):

{Ek, k € Z}, A, € H(Ek_H, Ek) (35)

where A; denotes the realization of Ay, the closure of A, in E, and is an isometric
isomorphism from Ej,; — E} which satisfies

p(Ar) = p(Ao) ke (3.6)

In order to have a better description of the negative scale we can use dual spaces as
follows, provided FEj is reflexive.

Assume E, is reflexive and let E! := EJ the dual space and E! := D(A!), where
Al E' ¢ E! < E! is the adjoint operator of Ay, which satisfies A% € H(E?, EY), see [IL
[.1.2.3, pg. 13].

Then, we repeat the process above and construct a discrete scale { E%; n € N}, which
can be identified with the original one by

E_,=(E') and A_,=(A)) neN, (3.7)

where the dashes denote the duals, see [I, V.1.4.9, pg. 272].
Now we construct intermediate spaces between the discrete scale { Ey, k € Z} following
two different procedures.

10



3.1 Construction of the interpolation-extrapolation scale for A

Recall that if a Banach space, say G, is densely included in other Banach space, H, they are
said to be an interpolation couple. Also, an interpolation functor of exponent 0 < 6 < 1,
[-,-]p, is a map such that for two given interpolation couples Gy, G; and H,, Hi, we
have Banach spaces Gy = [G1,Goly and Hy = [Hy, Hylg such that Gy C Gy C G,
H, C Hy C Hp and for A € L(Go, Hy) N L(G4, Hy), then A € L(Gy, Hp) and

1Al £(Go,t10) < AN E o 110) | A (G 1) (3.8)

see [16].

Remark 3.3 There are many interpolation functors that can be used here, but in par-
ticular we choose complex interpolation for simplicity and because in the applications to
(I1) it leads to a very convenient scale of spaces.

Starting with the discrete scale ([B.3]) and taking the complex interpolation method,
we proceed as in [I, V.1.5.1, pg. 275] to obtain the spaces

Eo = Ejyo = [Epr1, Eglo, 0€(0,1) k€eZ, (3.9)

and the operator A, as the interpolation of Ay ; and Ay, as in ([B.8)). Thus we obtain the
continuous nested interpolation scale

{E,, « €R}, Ay € H(Ens1, En) (3.10)

and A, is an isometry from E,,; into E,. Note that if « > 3, E, is densely included in
Ejz and A, is the realization of Ay in E,. Moreover, for every o € R

p(Aa) = p(Ao), (3.11)

see [I, V.1.1.2.e), pg. 252].
Now, since Ag € H(FEs41, Es), —Ap generates an analytic semigroup in Ez with the
property [1, V.2.1.3, pg. 289]:

le™ | c(pym0) < t>0, o, eR,a>p (3.12)

for any o > type(Ag) and C'(«a — ) is bounded for «, 8 in bounded sets of R.

If E, is reflexive, we can interpolate in the dual scale {Ef,n € Z} as well. We
take again the complex interpolation [-,-]g, and the negative intermediate spaces can be
identified with the dual of the positive ones as

E .= (FEY and A_,=(A") fora>0, (3.13)

see [I, V.1.5.12, pg. 282]. Also, the semigroup in the spaces of the negative side can be
identified with the duals by [Il, V.2.3.2, pg. 298]:

eA-et = (e~ 45ty o> 0. (3.14)

11



Note that the semigroups in ([B.12) are extensions or restrictions of each other one,
that is, given a > (3, then
e_ABt\Ea — e Aot >0,

J

For details see Lemma [I, V.2.1.2]. Hence, we have the following.

Definition 3.4 Under the assumptions above we say that the operator Ay defines an
analytic semigroup Sa,(t) in the interpolation scale { E,}acr in the sense that

Sa,(t)| g, = et Va € R.

Observe that

Cla—f) oot

pr—; t>0, a,eRa>p

1540 (D)l (85, 0) <
for any o > type(Ap) and C(a — [3) is bounded for «, 5 in bounded sets of R.

Remark 3.5 Note that we could have taken any other interpolation functor as long as it
has the reiteration property (as the complex interpolation does)

[Eau Eﬁ]n = E(lfn)oﬂrnﬁ 0< n < L« 6 eR

such as real interpolation, and the scale would have had the same properties (3.9), (310),
(311) and (313). But then we would have had to use the associated dual interpolation
functor of it for the negative part of the scale, to obtain (3.13) and (31j]). For more
information see [1l, V.1.5.11 pg. 282].

Now we construct the interpolation scale and the semigroup in the scale, as in Defini-
tion B.4] without assuming (3.4]).

Proposition 3.6 Let Ay € H(FE1, Ey) and take ¢ such that 0 € p(Ag + cl).
Then the scale {Ey}acr generated by Ao + cl, as above, is independent of ¢ and for
any « € R, the realization of Ay in E,, denoted as A,, satisfies

Aa S H<Ea+17 Ea)

and for all « € R
p(As) = plAo).

Hence we have an analytic semigroup Sa,(t) defined in the scale {E,}acr such that
Sa,(t)| g, = et a € R, and satisfies

Cla —
1S40 Ol 2(E5,E0) < %eot 150, a>B3€eR

for any o > type(Ay).
Furthermore if Ey is reflezive, then E_, = (E%)', A_, = (A%) for a >0, and

e—A,at — (G—Aﬁét)/'

12



Proof. If 0 € p(Ay), the construction has been carried above.

If 0 & p(Ap), there exists ¢ € R such that Ay = Ay + ¢l satisfies 0 € p(Ay), so we can
perform the construction above for the operator Ay. Note that the corresponding scale
of spaces is independent of ¢ because the interpolation scale is only determined by the
spaces { Ex }rez, and these spaces have equivalent norms independently of the ¢ chosen.

Thus, with A, = A, + ¢ in E, and applying standard arguments in [13] or [11] we

obtain that i
o—Aat — g—ct,—Aat

and the result follows. m

3.2 Construction of the fractional power scale for A

Now, starting again with the discrete scale ([3.5), we construct a fractional power scale
{F,}acr following [1]. See also [I1] and [12]. For this we will also assume for a moment
that

(—00,0] C p(Ayp). (3.15)

Since the intermediate spaces between the integer scale ([B.5) might be different to the
ones in the previous section, see Remark below, we denote now

F,=FE, forkelZ.

We first construct the positive fractional power scale. Using (BI5]), the resolvent
estimate in the sector (see Proposition B]) and integrating on a curve which surrounds
the sector (B]), one can give a suitable integral expression for the operator Ay, for a > 0,
which is bijective from Ey — R(A,®) C Ejy; for more details see [I}, I11.4.6, pg. 147], [11],
[12]. This implies that A = (A,*)~! is well defined, and therefore we can define

F,=D(Af) = R(A,%), a>0 (3.16)
with the norm || - ||, = [|A§ - [|o. Note that this construction for & = n € N coincides with
Ay and F, = E,.

So we get the positive fractional power scale

{F,, a >0}, Ay € H(Foi1, Fo), a>0, (3.17)

where A, is the realization of Ag on F,, and is an isometry, see [1, V.1.2.4, pg. 258] and
[1, V.1.2.6, pg. 260]. Moreover, for every a > 0

p(Aa) = p(Ao) (3.18)

again because of [I, V.1.1.2.e), pg. 252].
For the negative scale, note that ([BI3]) together with (B.6) implies (—o0,0] C p(A,)
for any n € Z. Fix now N € N and take A_y € H(F_nyi1, F_y). With the construction
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above as in (B.I6]) but with the operator A_y in F_y, we get the extrapolated fractional
power scale of order NV,

Fon=D(A%) a>0, (3.19)
see [I, V.1.3.8, pg. 266] and [1, V.1.3.9, pg. 267]. Then we have

{F,, « > =N}, A, € H(F,i, Fu), p(As) = p(Ap) a>-—N

and A, is an isometry from E, . into E,,.
Again, Fy, = Ey for k € Z, k > —N, and for a > 0, F,, and A, above coincide with

the ones in (B.17).

Now fix Ag : Fgq1 — Fp for any § > —N. Renaming Fs = Z, Fzq = Z' we have the
following reiteration property (see [1, V.1.2.6, pg. 260] or [12, Proposition 10.6])

7% = D(A3) = Fpye (3.20)
for e € [0, 1], and A is sectorial in Z, thus we can apply [I1} 1.1.4.3, pg. 26], to get

Cla—p)

7 t>0 a>p>-N (3.21)

le™ || £(mym0) <

for any o > type(Ay).
As above, if Fj is reflexive, we can identify the negative side of the scale with some
dual spaces by means of [Il V.1.4.12, pg. 274] getting

Fo=(FY and A_,= (A, a>0 (3.22)
with u
e~ Aot = (emAaty, (3.23)

Therefore analogously to Definition B.4] we say that Ay defines an analytic semigroup
Sa,(t) in the fractional power scale {F, },>_n in the sense that

Sao)|r, =€ Vax>-N

and
Cla—5)

1S5 O)lleryp) € —=g—=> t>0, a=B>-=N.

Now we construct the fractional power scale and the semigroup without assuming

B.15).

Proposition 3.7 Let Ay € H(E1, Ey) and take ¢ such that (—oo,0] € p(Ag + cI).
Then given N € N, the scale {Fy}o>—n generated by Ag+cl, as above, is independent
of ¢ and the realizations of Ag in F,, denoted by A, satisfy

Ay € H(Foq1, Fy) p(As) = p(Ao) a>—N.

14



Hence we have an analytic semigroup Sa,(t) defined in the scale {F,}oa>_n such that
Sa,(t)|p, = et o> —N, satisfies

HSAo(t)HL(Fﬁ,FQ) < — ¢ t>0, a>p>-N

for any o > type(Ap).
Furthermore if Ey is reflevive, then F_, = (Ff), A_, = (A%) and e~ 4-ot = (e*Agt)/
for0 <a < N.

Proof. The case (—00,0] € p(Ap) has been discussed before.

If (—o0,0] & p(Ap), there exists ¢ € R such that Ay = Ag+cl satisfies (—oo, 0] € p(Ay).
Then the corresponding scale of spaces is independent of ¢, see the comments on Definition
1.4.7 in [I1]. Thus, with A, = Ay + ¢l in F, and applying standard arguments in [13] or
[T1] we obtain that

_ efctefﬁat

and the result follows. m

Remark 3.8 Note that after Propositions [3.8 and [3.7, for Ay € H(E1, Ey) we have a
discrete scale [3.0) and with the notations of these propositions, we have

Fk:Ek fOT/{?EZ,l{ZZ—N.

Howewver, the intermediate spaces, F, and E,, for a« € R\ Z, o > —N, do not need to
coincide in general. But, if Ay has bounded imaginary powers, that is, there exist € > 0
and M > 1 such that

||A6t||L(E1,E0) <M fortée[—¢,¢l (3.24)

then E, and the scale of fractional powers F,, coincide, see [1, V.1.5.13, pg. 283].

An important case when this happens is when Eqy is a Hilbert space and Aq is selfad-
joint.

Finally observe that abusing of the notations we have used the same notations A,
and e~ 4t for both the interpolation and fractional power scales. This should produce no
confusion since it will be always clear from the context what scale are we working with.

4 The scales and semigroup for A3

In this section we show how the scale of spaces constructed in Section [3] for Ay can be
used for the squared operator A2 := Ayo A;. That is, our goal here is to relate the scales
of the square of an operator, A%, with the scale of the Ag. We will show that if we perform
the constructions in Section Bl with A we arrive to the same spaces than for Ay with a
suitable labeling.

Hence, we assume as in the previous section that

Ap € H(EL, Ep).
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Observe that by PropositionsB.6land B.7we can consider the associated interpolation scale
{Es}acr or the fractional power scale {F,}a>-n, N € N without assuming 0 € p(Ap) or
(—00,0] € p(Ap), respectively. Also, note that with the notation of the previous section,

A(Z) = AooAl, Ag By — E.
Hence, we will assume furthermore that
A € H(E,, Fy).

The following result, which is a particular case of [I2, Proposition 10.5], gives a criteria
for determining when A2 is a sectorial operator.

Proposition 4.1 Let Ay € H(FE1, Ey) with (—o0,0] C p(Ag) and satisfying ||(Ay —
)\)lg < I_Ii\ for X € Syg with ¢ € (0,5) where Sy, is a sector as (31) with vertex
a=0.

Then A% satisfies So s C p(A3) and
K

A2 )Y < —
| (AG )||Eo_‘)\|

for X € Sp oy, thus A3 € H(FEs, Ey).

Remark 4.2
i) As an indication for the proof observe that to solve Aiu — Mu = f, with A\ € C we can
rewrite this equation as

(A() + LUQ)(AO + wl)u = f
where wy and wy = —w; denote the complex square roots of . Thus \ will be in p(AZ2) if
both wy, wy € p(Ap). In particular, if X € Spa¢, with ¢ < 5, then wi, wy € Spe C p(Ao),
thus Spas C p(AZ). For the estimate, just note that

K
| |

K K
1(Ao +w2) g < = =117

1(A5 = Nz < (Ao +wi) ™ (Ao + w2) ' lm, < < =07
jwillwa|  [A]

i) 0 € p(Ag) implies 0 € p(A2).
i) In general, there is no relationship between type(A3) and type(Ay).

So now we can construct both interpolation and fractional scales for A2 following the
procedures explained in Section Bl In the next two results we will show that these scales
coincide with the ones for A, after a suitable labeling.

Proposition 4.3 Let Ay € H(E, Ey) and assume A2 = Aygo Ay € H(Es, Ey). Let
{Es}acr be the interpolation scale for Ay as in Proposition[3.4. Then on the scale X, =
FEy, with o € R we have A% := A, 0 Apr1 € H(Xoy1, Xo) and A2 defines a semigroup
Saz(t) in the scale {Xo}aer that satisfies Spz(t)|x, = e~ and

C<a — 6>eut

5o t>0,a,eR,a>p

1842 (x5,%0) <
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for any pu > type(A3). The constant C(a — ) is bounded for «, B in bounded sets of R.
If Ey is reflezive, the negative side of the scale can be described as

X_ o= (XYY and A%, = (A%), a>0

and it holds that s
2
e—Afat — (e_AO‘ t)/_

Furthermore, the problem

u+ A2u=0, t>0
u(0) = ug € X,

for any a € R has a unique solution u(t) = Sy2(t)up = e~ Aaty,.

Proof. Step 1. We start proving the result assuming 0 € p(Ay).

Hence, 0 € p(A32) and in this case it is easy to see that the construction (B.4)—(3.1)
applied to AZ leads to the discrete scale {X} : k € Z} with Xy = Fo, k € Z and
A2 = Ao Apyr € H(Xpy1, Xi).

By means of the complex interpolation, the construction (3:9)—(B12) leads for o = k+6
with 6 € (0,1), k € Z, to

Xo = Xiyo = [Xir1, Xilo = [Eorrr), Barlo = Faa

and
A% = A 0 Agr € H(Xou1, X0)

for any o € R.
In particular, by (BI2) with A%, we have as in Definition B4 that A? defines an

analytic semigroup Syz(t) in the scale { X, }aer that satisfies Spz(t)|x, = e~ 4%t and
Cla—p
SOl ccray < St 150 0 peRaz s

for any p > type(A32).

If Ey is reflexive we can identify, as above, the negative side of this scale with some dual
spaces. In fact, from (B7Z) we have X_;, = (X!) and A%, = (A%%)’ and by interpolation, see
BI3), X_o = (X}) and A2 = (A2Y, a > 0, with e~ A%at = (¢=A8t) and (A2)F = (4%)2,
see (3.14).

Step 2. Now, if 0 ¢ p(Ay), there exists ¢ € R such that Ay = Ag+cl satisfies 0 € p(Ag)
and Ay € H(E), Ey). Now we prove that A2 € H(E,, Ey). For this note that A2 = A2+ P,
with P = 2¢Ay + ¢*I, which satisfies || P||z(gy,5,) < Ro. Since Aj € H(E», Ey), using this
and Corollary 1.4.5, page 27 in [I1] we get 213 € H(Es, Ey).

Therefore we can use Step 1 for A2 and observe that from Proposition the inter-
polation scale for Ay, {Ea}acr, is independent of ¢. Denote then X, = Es,.
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Then A2 defines an analytic semigroup S 42(t) in the scale {X,}taer and as above

Sa(t)x. = e~ 44t and

Cla — _
”SA(Q)(t)”ﬁ(Xa,Xﬂ) < %eﬂt t > 0, OJ,B ~ R,Oz > ﬁ

where i > type(A2).

Now we transfer this information to the semigroup defined by AZ. For this observe
that A2 = A2 — P, with P = 2cAg + ¢*I as above, and for all « € R,

1Pllecxax, ) < o

with Ry independent of a.
1

Then we can apply Theorem E.I] with 8 = o — 5 and « arbitrary, to obtain the

semigroup Syz(t) defined in X, for all v € E(a) := (a—1, o] and satisfying the smoothing
estimate 27) from X, to X, for v € E(o) and v/ € R(f) :==[a — 3,0+ 3), 7 > 7.

In order to extend (2.7) for all 4/ > ~, we perform a “jump” argument as follows.

Given a € R, take f = a — % and o/ > « such that o/ < o+ %, so o’ € R(f3). Then we

can estimate the semigroup for 4/ in R(f’) through an intermediate “jump”, that is
7 € B(a) =7 € R(B)N E(d) =+ € R(F)
and using Syz(t) = Saz(t/2) - Saz(t/2)

M et(t/2) Mer /2 Nfert/2) M ekt

WHSA(%@/?)U(J!H = — luolly. (4.1)

HSA%(t)'U/(]”»y/ S (t/2>,y/_,$, (t/2);§/_,y Huo”')/ = t,y/_,y

So we get 271) for v € E(a) = (o—1,a] and v € R(f') = [&'—%,a/+1) and M depending
on v and v'. Tterating this process, we get (2.1 for all v/ > v with u >type(A2).

For the analyticity we use Theorem 2.3 Since {X, }.cr are interpolation spaces, this
scale satisfies the assumptions of case i) in Theorem 2.3} see (2.8). m

Now we turn to the fractional power scale to obtain
Proposition 4.4 Let Ay € H(Ey, Ey) and assume A% := Ago Ay € H(E», Ey). Let N € N

and {F,}o>—an be the fractional power scale for Ay as in Proposition 3.7. Then on the
fractional power scale Y, = Fyo with a > —N we have A2 := Ay 0 Agr1 € H(Yai1, Ya)

and Aj defines a semigroup Sy3(t) in the scale {Ya}a>—n that satisfies Sy (t)|r, = e At
and o 5
a J—
HSAg@)HE(Yg,Ya) < We“t t>0, a>p3>—-N

for any > type(AZ). The constant C(a — ) is bounded for o, 8 in bounded sets of R.
If Ey is reflezive, the negative side of the scale can be described as

Yoo = (Y} and A%, =(A?)  a>0,

«
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and it holds that
6—A2_at _ (G_A?lﬁt)/,

Furthermore, the problem
u+ A2u=0, t>0
’LL(O) =ug €Y,

A

or any o« > —N has a unique solution u(t) = S 2(t)ug = e~ atug.
J Yy q Az(L)uo 0

Proof. Step 1. We first assume that (—oo,0] C p(Ap). As before, it is easy to see that
the construction in ([3.4)-(B.1) applied to AZ leads to the discrete scale {Y} : k € Z} with
Yk = EQk = ng, k € Z and A% = Ak O AkJrl € H(Yk+1,Yk>.

Now for o > —N the construction in ([3I9) applied to A2 5, gives a fractional power
scale {Y, :a > —N}

Y, = D((A2)*™), a > —-N, A2 =A,0 4,1 € H(Yur1,Ya)

We prove now that Y, = Fj, for « > —N. In fact, because of (8.19) and (3.20), we
have
Vo= D((A2 )" ) = D(AS) =

Hence, as above, Af defines a semigroup Syz(t) in the scale {Y,}a> n that satisfies
Saz(t)|r. = e~ 44" and

C(a B 6) e,ut

pro; t>0,a>p>—-N

154z Dl 2vsva) <
for any u > type(A2), see (B:2])).

Also, if Ej is reflexive we can again, by (3.22]), identify the negative side of this new

scale with dual spaces
Yo=Y and A%, =(A?) 0<a<N
and from B23) we get e 2ol = (e~ATtY. )

Step 2. Now, if (—00,0] ¢ p(Ay), there exists ¢ € p(Ag) such that Ay = Ag + cl
satisfies (—00,0] € p(Ay) and Ag € H(FE\, Ey). Now we prove that Af € H(FEs, Ey). For
this note that Aj = AZ+ P, with P = 2cAq + ¢*I, which satisfies ||P||z (g, 5,) < Ro. Since
Af € H(E,, Ey), using this and Corollary 1.4.5, page 27 in [I1] we get A2 € H(E,, Fy).

Note that from Proposition B.7 the fractional power scale for Aq is independent of
c and by Step 1 we get the fractional power scale X, = Fy, and a sectorial operator
A2 = A 0Au1 € H(Yar1,Ys). Also A2 defines an analytic semigroup S 42(t) in the scale

{Y,}a>—n and as above SA?) )]y, = e~ A%t and
Cla— i
15O llcry < O De 150 azpz-N

where i > type(A2).
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To transfer this information to the semigroup defined by A2, observe that A2 = A2— P
with P = 2cAg + %1, as above and

1Pllevay, ) < Roy  a>-=N

Nl

with Ry independent of a. Then, we can apply Theorem 1] to obtain the semigroup
Saz(t) in Y, and smoothing from Y, to Y,/ for v € E(a) := (o — 1,a] and 7' € R(B) :=
[ — 3, a+3), 7 > 7. A similar jump argument as (@) concludes the estimate for all
v >y >-N.

Finally, the analyticity comes again from Theorem 23] part ii). In fact note that
fractional power spaces satisfty (2.9), see [1 V.(1.2.12)]. =

Remark 4.5 According to Remark[Z.8 if Ay has bounded imaginary powers, then A3 does
as well, see (3:24)). In such case both scales and semigroups in Propositions[{.3 and [{]]
coincide, that is, X, = Y, for a > =N, see [1l, V.1.5.13, pg. 283].

5 Some fourth order equations in the Bessel-Lebesgue
spaces in RY

We will apply the results in Section M to prove that the bi-Laplacian in some scales of
spaces defines an analytic semigroup and the bi-Laplacian equation (5.2) has a unique
solution. Then we will consider a general class of perturbations, namely derivative opera-
tors, even with space dependence, to which we will apply the results in Section 2 so that
the perturbed bi-Laplacian equation will be well possed.

We take, Ag = —A in LY(RY), with 1 < ¢ < oo with domain D(4y) = H*4(R"),
where H*4(RY), k € N denotes the standard Sobolev spaces (often denoted W*4(RY)).
In this setting, —A is a sectorial operator, [11], [2]. Even more using [2, 9.7, pg. 648] we
get that —A (and therefore A% by Remark [1.5)) has bounded imaginary powers in L9(RY)
for 1 < g < oo. Hence, in the following examples the fractional power scale and the
complex interpolation scale of Section [3] will coincide.

Note that LI(RY) is reflexive so that the negative scale is described as dual spaces,
see Section [3

Using the complex interpolation/extrapolation scale with Ey = LY(RY) and E; =
H*4(RY) as in Section Bl leads to the scale of Bessel spaces. These spaces are very
convenient because they satisfy the sharp Sobolev embeddings

LT(RN),S—%Z—%,1§7’<OO ifs— Y <0
HYRY) c ¢ L"(RY), 1 <r <o ifs—&:0
C(RN) if s—%>y>o0

For more details, see [I1], pg. 35], [1, 1.2] or [16, 1]. In what follows we will denote
B, = H?I(RN), a € R.
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Therefore for 1 < g < co the heat equation

_ Auy — N
{ut Au =0, reRY,t>0 (5.1)

u(0) = uy, in RY

defines a semigroup S_a (%) in the scale of Bessel spaces { E, }qcr that satisfies the smooth-
ing estimates

M,  etot
[S—a@)uollLr@yy < tﬂ(’qu)”UoHLq(RN), t>0, wuge LYRY)

2V\q r

for 1 < ¢ <r < oo and some constant M, , and

Ma,ge’mt

WHUQHHw,q(RN), t > O, Uy € Hzﬁ’q(RN)

1S_a(t)uo|| grea@myy <
forl < qg< oo, a,f8€R, a>pf. Inboth estimates above py > 0 can be arbitrarily small,
because type(—A) = 0. This as well as some other useful properties of —A and A? in
LY(RYN), 1 < ¢ < 0o, are collected in the next Lemma.

Lemma 5.1 Take 1 < ¢ < oo and denote Ey = LY(RY).
i) The Laplace operator —A in Ey with domain E; = D(—=A) = H*Y(RY) satisfies the
estimate

1(=A =Nl < MM for all X € Spg
for Sos as in (1), ¢ > 0 arbitrarily small. Furthermore o(—A) = [0,00) and therefore

type(—A) = 0.

ii) The bi-Laplacian operator A% in Ey with domain E, = D(A?) = HY(RY) satisfies
the estimate
H(A2 — )\)71"5(510) S M|)\‘71 fOT’ all A € 507211)

with ¢ > 0 arbitrarily small. Furthermore o(A?) = [0,00) and therefore
type(A?) = 0.

Proof. The first part, for the Laplacian, is well known. The resolvent estimate, in
particular, can be found in pages 32 and 33 of [I1].

For proving ii), since in i) ¢ > 0 can be taken arbitrarily small, we can apply Proposi-
tion 1 and we get that A? is sectorial with sector Sp a4, where 2¢ > 0 can be arbitrarily
small. Then o(A?) C [0,00) is an immediate consequence of the fact that ¢ > 0 is ar-
bitrarily small. On the other hand, as we will show in Proposition [6.3] working in the
uniform space L, (RY) we actually have o(A2?) = [0,00). Then, using [I, Lemma V.1.1.1,
pg. 250] we get o(A?) = [0,00) in LY(RY) as well. From this, we get type(A?) =0. m

Now, we can apply Proposition to get
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Lemma 5.2 Consider the problem

{ut+A2u:O, reRN t>0 (5.2)

u(0) = uy, in RV,

i) Then for each 1 < q < oo, (3.3) defines an analytic semigroup, Sa2(t), in the scale
Xy = Eyy = H*4(RY), a € R, such that for any po > 0 there exists C' such that

C(O[ B 6) e,uot

pr—; t>0, a,ER, a>p.

1Sa2 ()| £(rr8.a@Ny, Hraea @) <

i) The analytic semigroup Saz(t), in LY(RY), 1 < q < oo, satisfies

M,
||SA2(t)||E(LQ(RN)’LT(RN)) < tﬂ(l% 1)6M0t t>0
4 g

T

for any po >0 and 1 < g <r < oo and some M, > 0.

Proof.
i) We use Proposition for Ag = —A (note that if suffices to take ¢ = 1 in the proof of
the proposition), and we get that X, = Fy, = H*I(R"Y).
Note that from Lemma 511 type(A?) = 0 and then jo > 0 is arbitrary.
ii) For 1 < ¢ < oo, we use i) with @ = 0 and we have that A? defines an analytic semigroup

in L4(RY).
Now, if r > ¢ we use i) again, now with § = 0, and choosing « such that
N N
r q
and we get
M, erot
[Saz(t)uollr@ny < [|Saz(t)uoll mieamyy < ———|luol| Lamny,
t
which leads to
M, et
[Saz(t)uol| Ly < t%(’l*l) [[wol| La(rv)-
q T

Again, because of part ii) of Lemma B.1] type(A?) = 0 and then py > 0 is arbitrary.
[

Remark 5.3 For ¢ = 1, if we take any r > 1 and 3 > 25 then we have H*" (RY) —
L®(RYN) and therefore L*(RY) — H=4"(RY).
Now using i) with o = 0 we get

M 16“0t M 16“0t
[Saz () uol| rmny < T%THUOHH*‘WW(RN) < T’tT”Uo”LI(RN)

for any B > 5 (1 — 1). Hence we obtain the estimate in ii) for ¢ =1 and any r > 1, for

an exponent as close as we want to 5 (1 —1).
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Observe that the solution of problem (5.2) can be described as the convolution of
the initial data with the self-similar kernel for the bi-Laplacian operator, which satisfies
suitable Gaussian bounds; see e.g. [9, [10] and [8| [6].

Now we can use the results in Section ] to perturb equation (5.2]). For this we first
consider perturbations which do not involve derivatives and that can be handled with the
semigroup defined by (5.2)) in the scale of Lebesgue spaces as in part ii) in Lemma (.2
For this, as a consequence of Holder inequality, we get a result, as in [14) Lemma 21, pg.

37].
Lemma 5.4 Assume that m € LP(RY), then the multiplication operator
Pu(z) = m(x)u(z)
satisfies, forr > p' and % = % + %, that
P e L(L'RY),L'RY)),  Pllewr@vype@yy < Climl o).

Then we obtain the following preliminary result. This will be later extended to Bessel
spaces, see Theorem (.10 below.

Lemma 5.5 Let m be such that ||m||pp@yy < Ro, with p > %. Then for any 1 < g < oo

the problem
u + A’u=m(z)u reRY t>0
u(0) = uo in RN

defines an analytic semigroup S(t) in LY(RYN) that satisfies

M, et
”S(t)uO”Lr(RN) < 7tﬂ(f—l) HuOHLq(RN), t > O, Uy € Lq<RN>
4 \q T

for1 < q <r < oo with M,, and ;v depending on m only through Rj.
Furthermore, if, as € — 0,

N
m. —m in LP(RY), P>

then for every 1 < g <r < oo and T > 0 there exists C'(¢) — 0 as ¢ — 0, such that the
corresponding semigroups satisfy

C(e
1Se(t) = S| cpa@ny,or@mvy) < tﬂ(i_)l), VOo<t<T.
4 \q r
Proof. We denote Z, () := L"(RY), a(r) = —2£ € I := [~,0], note that this scale is
not nested. From Lemma [(.2]ii) we get that
C
1Sa2(t)]|c(25,20) < promy 0<t<1, a>p,
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forany o, 8 € I = [-Z,0

)
is, for each «q := —4%, <

|. On the other hand, from Lemma 5.4, we have for r > p/, that
a<0
P € L(Za)Z3), |Plleza,zs) < CllmlLo@m)
Witha:—%,ﬁz—%:a—gandoga—6:%<1,sincep>%.
Hence, with o and £ fixed as above, we can apply Theorem 2.1 and we get a semigroup
S(t) = Sp(t) in Z, for v € [, o] and satisfying the smoothing estimates

M lewt
HS(t)HE(ZA,,Zﬂ/)S ;/V_q/

for the indexes
vE€E(@)=(a—LalNI, Y eRB)=[BL+1)NI, o >7.

Now we show that as « ranges in [, 0], 7,7 range in I = [—%, 0]. To see this, recall
that o € [, 0], 8 = a— % and we can take 7,7’ € [, a]. Thus using a “jump” argument

as in (L) we just need to find the smallest 5 and the biggest . Since f = a — 4% the
smallest 3 is f = ag — 4% = —%, while the biggest av is a = 0.

For the convergence of the semigroups, first, using Lemma [.4] we get that [|[P. —
PHL(LT(RN)7LS(RN)) — 0, that is HPE — PHﬁ(Za,Z,@) — 0 for any o € [05070], ﬁ = — % Now
we can apply Theorem to get the convergence of the semigroup.

The analyticity will follow from Theorem below fora =0=0. =

Remark 5.6 For a similar result with ¢ = 1, see Remark[2.3.

We are now going to work with more general perturbations and in particular we will
consider perturbations that involve derivatives. For this we will need to work with the
semigroup defined by (5.2]) in the scale of Bessel spaces as in part i) of Lemma 5.2l For
this, let D" denote any partial derivative of order r € N and fix m € N.

Then if m > r, we have D" : H™¢(RY) — H™ "¢(RY). On the other hand, D" :
H-™4(RY) — H~™"4(RY), is defined as

< D'u,p >= (—1)r/ uD"p, for all ¢ € H™M7 (RY).
RN
Finally, if m < r, D" : H™9(RY) — H™"9(RY) is defined as
< D'u,p >=(—=1)""™ D™uD" ™y, for all ¢ € H'™™7 (RV)
RN

which corresponds to the composition D" = D"~ D™, where D™ : H™(RY) — LI(RY)
and D™ : LY(RN) — H™m(RN).
Thus for any 1 < ¢ < oo, r € N and m € Z, we have

D" e L(H™YRY), H" " (R"Y)), |ID"|| c(zma(@ny mm-—ra@ny < C
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for some C' independent of r, m, q.

Now we extend this definition to non-integer m. For this take m € Z and s € (m, m+1)
and take 6 € (0,1) such that s =fm + (1 —60)(m + 1).

Then by interpolation

D" - [Herl’q(RN)’ Hm’q(RN)]g — Hs,q<RN> SN [Herlir’q(RN), Hmfr,q(RN)]e — }[sfr,q(IRN)7
and we get that for any r € N and s € R
D" € LIH*RY), H*I(RY)), || D"l cmsa@nyme—ra@yy < C (5.3)

for some C' independent of r, s, q.
Using this and the results in Section Pl we get the following result in which we allow
perturbations with derivatives of order k£ < 3.

Lemma 5.7 Take J € N and a; € R, k; € N for j = 1,...,J with max; |a;| < Ry and
k = max|k;| < 3. Then for each 1 < q¢ < oo the problem
j

ut+A2u+E;]:0ajDkfu:O, re€RN t>0
u(0) = g in RY

defines an analytic semigroup, S(t), on the scale X, = Fyy = H**Y(RY), for any a € R
such that

Cla—p
HS(t)|’£(H45,‘1(RN)7H404,Q(]RN)) < %e“t t > O, Oé,ﬁ S R, a > 5
and also o
q,r
IS czo@ny,or@yy < t%(l_l)e“t t >0,
q T

forl < q <r <oo, with u, C(a — ), C(q,r) depending on {a;} only through Ry. The
constant C(a — [3) is bounded for o, B in bounded sets of R.

Furthermore, if for all j = 1,..., J, we have a5 — a; as € — 0 then for any T > 0,
a > B orr>q, there exists C(e) — 0 as € — 0, such that the corresponding semigroups
satisfy

Cle
|S:(t) — S<t>H»C(H‘lﬁ,q(RN)7H4a,q(RN)) < %, VO<t<T
and e
€
1S:(¢) — S(t)”L(L‘I(]RN),LT(RN)) < tﬂ(l_l), VO<t<T
4 \q r

forl <qg<r<oo.
Proof. Since X, = Ey, = H**I(RY), a € R, we get from Lemma 5.2 1) that

C
”SA2(t)”L(Xﬁ,Xa)_ oy 0<t§1, Oé,ﬁER, OzZﬁ
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From (53) each of the perturbations P; = a; D" satisfies ||P;j||z(x.,x
a € R with C'= C(Ry) independent of 7, and we have that

y < C for all

a—kj/4

J
P = ZPj € L(Xo, Xak/a), 1P| £(Xa X0 ry0) < C(J; Ro).

J

Hence, we can apply Theorem 2] with o € R, f = av— % and since the scale is nested,
we get a semigroup S(t) = Sp(t) in X, for v € E(a) := (a — 1,a] that satisfies the
smoothing estimates
M’Y,’Y' €Mt
||S(t)||l;(xy,xw,) < 5

for every ~,~ such that
v € E(a) = (a—1,q] and 7 € R(B):=[a—k/4,a+k/4), vy > .

Again, since a € R is arbitrary we can use the “jump” argument as in ([@1]), we get
the smoothing estimate for any ~v,v" € R, 4" > .

The analyticity comes again from Lemma and part i) in Theorem 23]

Now, if 1 < ¢ < oo and r > ¢ we take 8 = 0 and « such that H*4(RY) — L"(RY),
that is —% =4a — %. Then we get

Cla)et
tOé

¢
Cyret

D

IN

HuOHL‘!(RN) =

1S (t)uol| Lrmry < C[S(#)uol| grac.amny |2ol] La(rry

The convergence of the semigroups is consequence of Theorem since if a; — a; we
would have P. — P in £(X,, Xo—k/1) as € — 0 for any a. m

Remark 5.8 For a similar result with ¢ = 1, see Remark[2.3.

Finally, we study more general perturbations in which we allow a space dependence.
For this, take &k € N which is the order of the perturbation and take a,b € N such that
a+b=k. We define P,; to be a perturbation of the form

Pyyu= D"(d(x)D"u)  ze€RY

for a given function d(r) with x € RV in the sense that for any smooth enough ¢
< P,yu, o >= (—1)b/ d(x)DuDp. (5.4)
RN

We will assume below that the coefficient d(x) belongs to the locally uniform space
LY (RY) composed of the functions f € L} (RY) such that there exists C' > 0 such that
for all z, € RY

/ fr<c (5.5)
B(zo,1)
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endowed with the norm

Hf”L" (RN) = Sup HfHLP (B(zo,1))-
roERN

The following result states the spaces of the Bessel scale between which a perturbation
P, is a well behaved linear operator.

Proposition 5.9 Let P,; be as above, d € LY,(RN) and let s > a, 0 > b. Then for
1< qg<ooand

N N N
s—a——)_+(c—-b——)_>—— 5.6
( . )— +( q,) p, (5.6)
we have
P,y € L(H(RY), H9(RY)), | Papll cirrsa@ny, m-ea@nyy < Clld]| Lz @)

Proof. Let {Q;}, i € Z" be a partition of RY in open disjoint cubes centered in i € Z¥
with sides of length 1, parallel to the axes. Note that RY = U;ezvQ; and Q; N Q; = () for
i # 7. Then

| / dDuDo| < S| / dD*uDg| < 3 ( / jd]?)# ( / | Dl / |DPol7)
RN ; Qi Z Qi Qi Qi

where we have applied Holder’s inequality with l + 1 + 1 = 1. If (58) holds, we can

choose n, 7 as before such that s — & > ¢ — % and o— q— > b— N. Now, we can use the
embeddings of Bessel spaces and, for some C' is independent of the cube );, obtain

| / dD"uD"¢| < Clld] @) 3 Nullima@ollelaeaqn

1/q 1/¢
< Clld|z, @) (ZHU!?{W(QJ (ZH@HHH ) . (B0

Then, as in [4, Lemma 2.4], we get for any 0 < o <2 and any 1 < ¢ < o0

Z 181120000 < Cllélfzaagny — forall ¢ € H**I(RY),
and we obtain from (&.7)

| / AD | < Clldl] v [l 1y | 2l oy

which gives the result. m

Now we can use again the results in Section [2] to obtain the following.
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Theorem 5.10 Let P, be as in (5.4]) with k,a,b € {0,1,2,3}, k =a+b. Assume that
||d||LpU(RN) < Ry with p > ﬁ, then for any 1 < q < oo and such P,y there exists an
interval I(q,a,b) C (—1+ 2,1 —2) containing (=1 + % + %,1 — b gp), such that for
any v € I(q,a,b), we have a strongly continuous, analytic semigroup, Sp, ,(t) in the space

HY(RN), for the problem

ug + A%u+ D(d(z)Du) =0, 2 €RY t>0
u(0) = ug in RV,

Moreover the semigroup has the smoothing estimates

ut
Mvwe

WHUOHH‘”"I(RN)? t>0, ug € H4%q(RN)

||SPa,b(t)u0||H4'Y/7‘I(RN) <

for every v,y € I(q,a,b) with v > ~, and

t
M, et

HSPa,b(t)uOHLT(RN) < N(1l_1y
t4 q T

ol Layy, >0, up € LY(RY)

with 1 < g <r < oo and some My ~, My, and i € R depending on d only through Ry.
Furthermore, the interval I(q,a,b) is given by

a N, 1 1 b N 1 1
Hgab) =(—1+24 22 12222,
Finally, if
N

then for every 1 < q < oo and T > 0 there exists C(e) — 0 as € — 0, such that

1Sp. () = Sp(O)l £(prava@ny o a@ayy < P VOo<t<T

for all v,~" € 1(q,a,b), v >+ and for any 1 < ¢ <r < o0

Cl(e
1S5, (£) = Sp(t) sy vy < % VO<t<T

4 \q r

Proof. By Proposition and using X, = Fy, = H**(RY), o € R, if we assume for a
moment that (5.6) is satisfied for some s and o, then it would be true that

PeL(Xgyn X op)s  NPllex.ox_,,o < Clldllop@yy.-

Hence we can apply Theorem [2Tlabove with a = s/4 and f = 0 /4 provided 0 < a—f < 1,
that is s + 0 < 4.

28



Thus, we check now that (5.6) and s+ o < 4 hold for suitable pairs (s, o). For this we
rewrite the ranges for s, o in Proposition 5.9 in terms of § = s —a — % andod =0—b— %,

5052—%,52—% since s > a,0 > b. Then (5.6]) and s + o < 4 read

52—5,62—5/, —E/§§_+&_, s+o0<4—k—N. (5.8)
q q P
Note that since necessarily —% <4 —Fk— N, we get that p > ﬁ.

The set of admissible parameters (5,5) given by (G.8) depends on the relationship
between ¢, ¢’ and p. Note that (5.8)) defines a planar trapezium—shaped polygon, P,
whose long base is on the line s+ 0 = 4 — k — N and the short base is on the line
s+o0 = —g in the third quadrant. As for the lateral sides note that the restriction
—g < 5_ + o_ adds the condition that § > —g in the second quadrant and ¢ > —g

in the fourth. These have to be combined with § > —% and o > —%. Therefore the
lateral sides are given by the lines § = max{—g, —%} and 0 = max{—%, —%}. One of
the possible cases is depicted in Figure [II

Figure 1: Admissible § and ¢ with p > ¢, ¢

a

Va2

2|z

Note that the polygon P transforms into a similar shaped polygon P which determines
the region of admissible pairs (s, o).
In any case, projecting P onto the axes gives the following ranges for s and &

N N N N
§€ max{——,——}4—k—N—max{——,——1})
q p q
N N N N
6 € max{——,——}4—k—-N—-max{——,——1}).
p q p q
Thus NN [
seh=lat (S - )nd—b- (5 -2



T )
q q P

For each pair of admissible pairs (s, o) € P, by Theorem 2T with o = § and 3 = ¢,
we get a perturbed semigroup and smoothing estimates (2.7) in the spaces corresponding
to v and 7/ as in (2.6, i.e.

YyEE()=(a—-1a], Y eRB)=[8+1), >~

UEJQZ[b+(

==

Hence as (s, o) range in the region P a repeated “jump” argument as in (L1]) gives that
the smoothing estimates hold for v € (U, ,)ep E(s/4) and v € U, pyep R(0/4), 7 = 7.
This leads to

inf J; | Sup J1 sup Jo 1 inf J,

/
A g b TElE— A

7€ ( ), >

which, after a simple calculation, reads

a N, 1
7.7 €1(ga.0) = (=1+ 7+ —(5 —

1 b

For the estimates in Lebesgue spaces we use the Sobolev inclusions. Taking 1 < ¢ < oo,
v =0and 0 <~ € I(q,a,b) we define r > ¢ such that H*"4(RN) — L"(R"), that is
—% =4y — %. Then we get

My/e“t
ISP, , (Ouollr@yy < ISP, , (D uol gav.a@yy < T”UOHLQ(RN)
and 7' = %(% —1). Now we follow a jump argument as in ([@.I)) where we take Sp, , (t/2)uq

as initial data in L"(R"), repeat the argument above to estimate Sp, , (t)ug in L7(RY) for
7 > r > ¢. Since the intervals I(r,a,b) contain (=14 § — %,1 — b 4%) which do not
depend on 7, repeating the jump process several times we can get the estimate for any
r>q.

The convergence of the semigroups is a direct consequence of Theorem 2.2] since
Proposition gives that if d. — d in LY, (R"), then P. — P in L( X4, Xo/4) for any
pair of admissible (s,0) € P. The case of Lebesgue spaces follows from this as well.

Finally, the analyticity comes again from Lemma and part i) in Theorem 23 =

Remark 5.11 Note that different perturbations P,; can be combined together, although
not all combinations are allowed.
In fact, if we consider two such perturbations, say P, and P4, then they can be
combined provided
max{a, c} + max{b,d} < 4

with an interval for P = P, y+ P, 4 given by I(q, P) := I(q, max{a, ¢}, max{b,d}). Observe
that there are 127 possible such combinations.
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Here we present a scheme for determining, given a perturbation P,;, which are the
other ones allowed to be combined with it. For example, if we fix a perturbation P, with
k = 3, then, all perturbations P, 4 with ¢ < a and d < b can be combined with it, and the
interval is 1(q, P) = 1(q, a,b).

For example a perturbation P,y can be combined with all the ones included in the
shaded area in Figure [ with interval I(q,2,1). However, the encircled perturbations Ps
and Py o cannot be combined together.

Figure 2: Combining perturbations.

(a,b)

(0,0) k=0
0 (O1) =

©®

03) k=3

If we fix a perturbation P,;, with k = 2 then, all perturbations P,q with ¢ < a and
d < b can be combined with it, and also those with c —1 < a ord—1 <b, but not both at
the same time.

The same happens for P,y with k = 1, all perturbations P, 4 with k < 1 can be combined
with it.

Observe that perturbations in (5.4 can be handled as above because we could deter-
mine the spaces of the Bessel scale between which a perturbation P, is a well behaved
linear operator; see Proposition However the fact that a, b are integer derivatives is
not really essential. Therefore, this class of perturbations can be extended to the following
one, where derivatives are replaced by fractional powers of the Laplacian as long as this
one is well defined in our scale. For example —A + ¢I, with ¢ > 0 can be used in this way,
because the operator (—A + cI)"/2, r > 0 satisfies for any s € R,

(=2 + eIy € L(HRY), HIRY)), (/=2 + eI | crgnaey me-ragevy < C

for some C' independent of s, 7, g. Note that this estimate is analogous to (B3] for a
non-integer 7.
Thus, the perturbations

Poyu = (—=A+c)"*(d(z)(=A + cD)*u)  a,b>0

for any a, b € R, in the sense that for any smooth enough ¢

< Py >= [ d@)(-8+ e Pu(-2 4 D), (5.9)

RN
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with d € LY, (RY), satisfy the statement in Proposition
Then proceeding exactly as in Theorem (.10, we recover the same results for this kind

of perturbations, with the only difference that now k£ = a + b is a real number smaller
than 4.

Theorem 5.12 Let a,b,k > 0 be real numbers such that k =a+b < 4 and P,; be as in
(29). Assume that HdHLp ®y) < Ry with p > 7. then for any 1 < q < 0o and such Py,
there exists an interval I(g,a,b) C (—1+%,1—2) containing (—1+%+%, 1-2— %), such
that for any v € I(q,a,b), we have a strongly continuous, analytic semigroup, Sp, ,(t) in
the space H*(RYN), 1 < q < oo, for the problem

u + A*u+ Pyyu =0, zeRY, t>0
u(0) = ug in RV,

Moreover the semigroup has the smoothing estimates

M.,

152, , () toll grvr.a vy < ﬁl!uOHmw @), t>0, up € HI(RY)

for every v,y € I(q,a,b) with v > ~, and

M, qett

1Sp, , (t)uol|Lr@yy) < —x

tj(i)HuOHLq (RN); t > 0, Uy € Lq(RN)
q T

with 1 < q <r < oo and some My, My, and jp € R depending on d only through Ry.
Furthermore, the interval I(q,a,b) is given by

a N, 1 1 b N 1 1
I — (142 R DS T el T
<q7a7b) ( +4+ 4<p q,)+7 4 ( )+)

Finally, if
d. —d in LH(RY), p>-—or

then for every 1 < q <r < oo and T > 0 there exists C(¢) — 0 as ¢ — 0, such that

C(e)
HSPE (t) - SP(t)|’L(H4w,q(RN)7H4w/,q(RN)) < W—_V’ VOo<t<T
for all v,~" € I(q,a,b) with ¥ >~ and for any 1 < g <r < oo
Cle
1Sp.(t) = Sp(D)|l cwa@y).or@yy) < N(E ) Vo<t <T.

2’

Note that Remarks and [B.11] apply here as well.
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6 Fourth order equations in the uniform Bessel-Lebesgue
spaces in RY

The heat equation (5.1]) and therefore the bi-Laplacian equation (5.2]) can be also con-
sidered in much larger spaces than the Bessel spaces above, by taking the initial data in
locally uniform spaces.

For this consider the locally uniform space L{,(RY) for 1 < ¢ < oo defined as in (E.H)
and denote by L (RY) the closed subspace of L{,(RY) consisting of all elements which
are translation continuous with respect to || - HL‘IU(RN), that is

I7y¢ — llLg,@r) =0 as [y| =0

where {7,y € RV} denotes the group of translations. Note that LI(RN) c L (RN) for
1 < ¢ < oo and for ¢ = 0o we get LF(RY) = L®(RY) and L¥(RY) = BUC(RY).

In order to obtain sharper results we introduce the uniform Bessel-Sobolev spaces
HE(RN), with k € N, as the set of functions ¢ € H>*(RN) such that

loc

1l 70 @ny = sup 161l pra (B 1)) < 00

for k € N. Then denote by Hj>*(RN) a subspace of Hj*(RY) consisting of all elements
which are translation continuous with respect to || - || ,;x.q (rv)s that is
U

”Ty(b - ‘bHHl’j’q(RN) — 0 as |y| —0

where {7,,y € RV} denotes the group of translations.

Consider the complex interpolation functor denoted by [, g, for 8 € (0,1), see [10]
for details. Then for 1 < ¢ < oo, k € NU{0} and s € (k,k + 1) we define 6 € (0,1) such
that s = 6(1 + k) + (1 — 0)k, that is ¢ = s — k. Then one can define the intermediate
spaces as

HE(RY) = [HE(RY), HEY(RY),,
and ' ' '
Hi (RN) = [H™(RY), Hy*(RY)]s.
Using Proposition 4.2 in [3] it is easy to see that the sharp embeddings of Bessel spaces

translate into

N

LB(RN),S—%Z—%,1§T<OO if s—4 <0
HYPRY) c{ Lp(RY), 1<r < oo ifs—%: (6.1)

Now, the Laplace operator was considered in the scale of spaces Hy?(RY) and H9(RY)
in [3] where it was proved that —A defines an analytic semigroup. However in the “un-
dotted” spaces the semigroup generated by —A is analytic but not strongly continuous
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and these spaces are less convenient to use because smooth functions are not dense in
them; see [3].

Therefore, the scale above is no more than the complex interpolation scale of Section [3]
for —A in LE(RN) or L (RY) respectively. Also, the negative side of the scale is defined
by the interpolation/extrapolation procedure described in Section Bl Since this is a
complex interpolation scale, for 0 < s < k, k € N.

H5URYY = [L9(RY), Hy " (RY)]g,  with 6 = %

It was moreover proved in [3, Theorem 5.3, pg. 290], that —A has bounded imaginary
powers, and therefore this scale coincides with the fractional power one; see Remark

However, since the uniform Sobolev spaces are not reflexive, even for ¢ = 2, we do
not get the description of the negative part of the scale in terms of the dual spaces, see
Section B

Therefore, we start with some description of the negative spaces which complements
the results in [3].

Proposition 6.1 We have that

. . _ N N
LZ(RYN) — H*(RY)  if s— 7 > — s> 0.
Proof. We first assume that 0 <s < 2. .
i) We know from Section B that H;;*(RY) is the completion of Hp; *(RY) with the norm
[(=A+1)*- I j72-+agr~)- This means that f € H;*(RY) if and only if there exists an
approximating sequence {f,} € Hé_s’q(RN) that converges to f in H59(RN).
Since (—A + 1)~ is an isometry from H “(RY) to H,*>(RY), see the beginning of
Section V.1.3 in [1], this is equivalent to

(=A+ D)7 — (A +1)7f  in H>59(RN),

and observe that since f, € Hp “(RN) then (=A + I)7'f, € Hy ®%(RY). Thus, we
get that f € Hy,Y(RYN) if and only if there exists {u,} € H; “/(RY) such that u, —
(A +1)"1f in HZ>I(RN),
ii) Now, take f € LP(RY), then from the results in [3] we have u = (=A + I)71f €
HEP(RN) and since s — g > —% holds by assumption, we have HZ"(RN) < H}*9(RN),
and 2 — s > 0. Therefore u € H; >(RV).

Since H; *Y(RN) is dense in H; *%(RY), there exist u, € H, *Y(RN) such that

n—o0

||t — u||Hl2;s,q(RN) 220 and therefore by 1), f € H;>(RY). Note that the inclusion is
continuous, since (—A + I)~! is an isometry on the scale and then

1f 1l 0@y = (=4 + [)AfHH@—M(RN) <Cl(-A+ [>71fHH[2]”’(]RN) = Clf 2z @m)-

In order to prove the result for s > 0, we can repeat the whole argument above,
using (—A + I)~", which is an isometry on the scale, for a suitable n. If 2 < s < 4
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we use n = 2, thus in part i) we obtain that f € H,>(RY) if there exists a sequence
{u,} € HS_S’Q(RN) converging to u = (=A + I)7*f in Hy ®(RN). In part i) we now
have u € Hy"(RN) «— Hy ®9(RN) since now 4 — s > 0 and the result follows as before.

In the same way, for 2(k — 1) < s < 2k, we use n = k and repeat the argument above.
u

Remark 6.2 Note that the embedding in Proposition [61 is precisely the one one could

expect from (61) if the spaces where reflexive. Also this is the embedding that holds for the

standard Bessel scale as in Section[d. Needless to say the conditions for the embeddings
N _ N

read also s > = — £,
P q

Using the spaces above and the convolution with the heat kernel, it was proved in
Proposition 2.1, Theorem 2.1 and Theorem 5.3 in [3] that the heat equation defines an
order preserving analytic semigroup in L{,(RY) and , for 1 < ¢ < oo, which is strongly
continuous in L, (RY) and in B, := H;*(RY), a € R. Moreover, this semigroup satisfies
the smoothing estimates

M, et 0N
||S—A(t)u0||LTU(RN) < t%(l_l) ||u0||LqU(RN)7 t>0, wupe LU(]R )
q r

for 1 < g <r < oo for u> 0 arbitrary, and

Maﬂe“t

to—>5 ||UO||HI2],B,q(RN), t > 0’ uy € lejﬁ’q(RN)

||S—A(t)u0||H[2Ja’q(RN) <
with p > 0 arbitrary, for any o, 5 € R, a > f3.
It was also proved in [3] using a parabolic argument that type(—A) = 0 in the L;’](RN )
spaces (and thus in H(RY)), which explains why g > 0 above is arbitrary.
We now show some relevant information on the spectrum and resolvent of —A and A2
in the uniform spaces which is analogous to Lemma [5.11

Proposition 6.3 i) For 1 < ¢ < oo, in the space Ey := L%(RN) the operator —/\ with
domain By := D(—A) = HZ(RN), satisfies the estimate

I(=A = X)) < MIAT
for all X in a sector Sy as in (1) for ¢ > 0 arbitrarily small.
Furthermore, o(—A) = [0,00), and thus, type(—A) = 0.
i) For 1 < q < oo, in the space Ey := LE,(RN) the operator A* with domain E, :=
D(A?) = Hj%(RN), satisfies the estimate
1A% = X)) < MIAT
for all X in a sector Sy a4 as in (31) for ¢ > 0 arbitrarily small.
Furthermore, o(A?) = [0,00), and thus, type(A?) = 0.
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Proof. To prove part i), observe that, as in page 32-33 in [11], we can obtain an expression
for the operator (—A + ul)~', provided Re(y/n) > 0, as a convolution operator. The
expression is

=(=A+p) ' f=T,xf Re(y/11) > 0
with
U,(z) = " °Go(Vux), x€CN,  Re(yn) >0

where (G5 is defined as

1 > —N/2 —t+z-x/4t N
W/O t e dt, €T € C y

see page 132 in [I5] or page 33 in [11].
According to [T1], we have for z € C¥ and N > 2 and Re(¢) > 0

Go(z) =

|Ga(2)] < Cle]~M/2(Re £)P~M2em3ReE ¢ = (/7 (6.2)
and if N = 2,
G (2)] < C max{In Rieg, e 3R o /ia (6.3)

Now observe that if A € Sy 4 with ¢ > 0 then for p = =X € C\ (—o00,0] we can
choose Re(y/jt) > 0. For such A and similarly to Lemma B.1] we are going to check that
for f € L?J(RN) we have the following estimate for v =T, * f,

Jull Lo @y < C|)\| 1 £l g &y A€ S ¢ > 0.

Let {Q;}, i € ZV, be a partition of RY in open disjoint cubes centered in i € Z" with
edges of length 1, parallel to the axes. Thus Q; N Q; = () for i # j and RY = U;Q;.

Then we fix i € Z" and decompose f € LI T(RY) in a far and a near region as
in Proposition 2.1 in [3]. For this we denote by N(i) the set for indices j such that
QN @ # (0. That is, the set for which

d;; = inf{dist(z,y),z € Q;,y € Q;} (6.4)

satisfies that d;; = 0. Thus we can define, for each i € Z" fixed
Qi = Ujen@;  and QI =RN\ Q.

Hence, we decompose f := fl°*" + fif = fxgreer + fx ofer and w 1= uper 4 u{ “ with

near .__ near far far
u’ =T, f w =T 77

(2

The resolvent estimate will follow from the following estimates of the two terms of the
decomposition. For A\ as above, we have first,

near C
[ o S [fllza@peary, A € Sog (6.5)
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and, second,

ar C
" 2~ WHfHL;J(Q{w), A€ Sog (6.6)

for some C' independent if i € Z.
In fact, since the constants for the embedding L>®(Q;) — L(Q;) and restrictions
LIL(RYN) — LY(Qrer), LL(RY) < L{;(Qr**") depend on N but can be chosen independent

of p, ¢ and 7, (€3) and (G0 imply
C
[ullzan < WHfHLgJ(RN), A€ Sop (6.7)

for each i € Z" with C independent of i and A € S 4, which gives the result.
Hence, we first prove (G.5]). As a consequence of Lemma [B.1], we get for all A € Sp 4

e C(N)
lza@y) < Tl F7 Nm@y) = == 1 ogpenn.
") ST Y (@)

near ||

near

ra@y) < |l

We show now (B8) for N > 2. Observe that f/* = xgper = ZjeZN\N(i) fxq,- Hence,
because of ([62) with z = \/uz, Re(\/t) > 0, z € RN, = —X and A € Sy 4, we have for

all x € Q;
ul (@) = D |(Tu* fxa,) (@)

JEN (i)

_ — —LRepulz—
< 32 O [V (VR — o) YRRl — )N

JEN(i) veQ;

N/2—1 _ N —Ya—ulRe
< Cllf g pen VI Re(V'™™2 3 sup far =y et
JEN (@) Y=

Note that for all z € (); and y € @), it holds |z — y| > d,;, thus

VA N2 1
far < C f L far | / d2 N ——d,JRe\/_
@) < Wy g ) 3

Hence

ar V ‘)\| N/2—1 22N —la.R
™ |0y < CIIf NIy @ ) > diNemztultedi
A i ] R i
v (Vi) FEN (i)

Now, using that #{j € Z,d;; = k} < Ck™~! we obtain

far < VIAL (v —1kReyp
[[u; ™ | 20 —C”f”Lb(Qf”>(Re(\/ﬁ)) ,;ke 2

VIAL \ve-1 % g
<C”fHL1 (Qf‘” (W) / : re 2 R\/ﬁdﬂf
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Finally, changing variables in the integral above as y = Re( /1)z, we obtain

VIAL (v 1
<C(R€(\/ﬁ)) Re(\/ﬁ)2||f||Ltlj(Q{M)

|| far

|22 (Qy)

which can be arranged as

far - < |)‘| N/2+1C .
e lsi@0 < () T ety

To conclude, observe that for all A € Sy 4 we find

I imon < —— L e
i Qi) = COS<¢/2)N/2+1 |>\‘ Ly(Qi“")”

Thus, (6.6)) is proved for N > 2.
We show now (6.6) for N = 2. Proceeding as above and using (6.3]) we get

1 1

far 3 “ldijReE

;™ @ < CllF Ny rory &N (i) mexin dijRe(\/1t)’ Hems i
j i

Using again that #{j € Z,d;; = k} < CkN~! we get

S 1 ,
Jar —skRe/li
l|w; “ || Loo () < CHf”L}](Q{‘”) 321 k max{In R 1}e™2

[e.e] 1 1 R
—zxRe\/11
< CHfHLb(Q{M) /0 x max{In 73:]%@(\/;7)’ 1}e2 dx

and with the change of variables y = Re(,/p)x we obtain,

ar C )\ C
] — (YR O

e < WMy g e = Retym) il ety
Thus for all A € Sy 4 we find

C
far oo . < ar
i o) < cos(9/2)2 [ HfHL%J(Q{ )

and the result is proved.
In particular, o(—A) C [0,00). For the opposite inclusion, note that u(z) = e™“*,
w € RN satisfies u € L¥(RY) and
—Au = \u

for A = |w|?* C [0,00), and thus [0,00) C o(—A).
For part ii), since —A is sectorial with sector Sy, with ¢ < 7/4 and we have the
estimate |[(—A — A)7Y| < % for A € Sy 4, we apply Proposition A1l Therefore, we
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get that A? is sectorial with sector Spas. Note that o(A?) C [0, 00) because ¢ > 0 is
arbitrarily small. Also, note again that u(x) = ¢“*, w € R" satisfies u € L¥,(R") and

Ay = \u

for A\ = |w|* C[0,00). =

Now we are ready to use Proposition [4.3] and an argument as in Lemma [5.2] to get the
next result.

Lemma 6.4 Consider the problem

{ut+A2u:0 re€RN t>0 (6.8)

u(0) = g in RV,

i) Then for each 1 < q < oo, (G.8) defines an analytic semigroup, Sa=(t), in the scale
X, = Es, = Héa’q(]RN), a € R, such that for any po > 0 there exists C such that

M, zet .
HSAQQ)UO”H[@‘I’Q(RN) < ta,ifﬁ”uoHH?jB’q(RN)v t>0,uo € Hé@q(RN)

with a, B € R, a > . .
i) The analytic semigroup Saz(t), in LLE(RY), 1 < q < oo, satisfies

M,

T‘e/J'Ot .
ISa ol < ol > 0o € LY RY)

forany 1 < q<r <oo and >0 and some M,, > 0.

For a similar estimate with ¢ =1 < r < 0o, see Remark

We can now adapt the arguments for Bessel and Lebesgue spaces in Section [l to the
uniform Bessel spaces to perturb equation (6.8) as follows. First, as in [I4] Lemma 26,
pg. 43] we have

Lemma 6.5 i) Assume that m € LY, (RY), then the multiplication operator
Pu(z) = m(x)u(z)
satisfies, forr > p' and % = % + %, that
P e L(Ly(RY), L (RY)), 1P|l cezr @y, @yy < Cllmllze @y
i) If moreover m € LE.(RN) we have for v > p' and =14 %, that
Pe L(UU<RN)7LSU<RN))7 ”PHE(L’{J(RN),L[S](RN)) < CHm”L’,;(RN)-
Then Theorem 2.1] leads to
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Lemma 6.6 Let m € LF(RN) be such that ||m||L’l’](]RN) < Ry, with p > I Then for any
1 < q < o the problem

w+ Au=m(z)u re RN t>0
u(0) = uo in RN
defines an analytic semigroup S(t) in L?](RN) that satisfies
M, et .
IS0l < T lunligmy: >0, w € LR

4 q

for1 < q <r < oo with M,, and ;1 depending on m only through Rj.
Furthermore, if

. N
m. —m in LY (RY), P>

then for every 1 < q <r < oo and T > 0 there exists C(¢) — 0 as ¢ — 0, such that

Cle)
”Se(t) — S(t)HL(Lq(RN)Lr(RN)) < t%Tl)’ VO<t<T.
q r
Proof. With Z,,) := L"(RY), a(r) = =& € I := [-,0], we know from Lemma 6.4
that o
1Sa2 ()|l 2(z5,2.) < pr f<a a,pel, 0<t<1
and we read Lemma [6.0 as P € L(Z,, Z3), for a = —4—]\£ and f = a — 4% = —% for
anyOZaZaoz—%,withOga—ﬁz—%Jr% :4% < 1 since p > %and

1Pl (Za,25) < Cllml| i vy
Then we apply Theorems 2.1] and for each «a, B as above. Note that, arguing as in
Lemma 5.5, v and 7/ can be taken in the whole interval I = [—4, 0].
Finally, the analyticity will follow from Theorem below with a =0. m
Now, we consider more general perturbations, similar to the perturbations in (5.4))
with b = 0, that is,
Pu = d(x)D"u (6.9)

with d € LY (R") and a € N. Note that since the uniform Bessel spaces are not reflexive
(even for ¢ = 2), the negative spaces cannot be described as dual spaces, and thus, the
approach in Proposition can not be carried out for b # 0 in uniform spaces.

Proposition 6.7 Let Pyu = d(z)D% with d € LE(RY), a € {0,1,2,3} and let s > a,
o >0. Then for 1 < g < oo, if

N N
7 (6.10)

(s—a—;),+(a—

we have

P, € LHF(RY), H;7(RY)), ||Pa||L(HIS]"1(]RN),HE”"1(RN)) < Clldl g mny-
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Because of (6.I0) we can

Proof. First note that u € H;*(RY), thus D% € Hj, “*(RN).
o> Y with L =141 (and
p p rop

choose r,p > 1 such that (s —a — %)_ >~ and (o g
sor>7p).

Therefore we can use the inclusion Hy, “*(RN) < Li,(RY) and then part ii) in Lemma
gives P,u € L{’](RN ) and finally, because of Proposition 6.1l we use the inclusion
LY (RN) < H;7(RN) and we get the result. m

With this, we can obtain the main result for perturbations of (G.5)).

Theorem 6.8 Let d € LY;(RY) such that ||djp gy < Ro with p > %, a € {0,1,2,3},
then for any 1 < q < oo and any P, as in (6.9) there exists an interval I(q,a) C (=14+5,1)
containing (—1 + § + 4p, 1— @), such that for any v € I(q,a), we have a continuous,
analytic semigroup, Sp, (t) in the space Hﬂwq(RN) for the problem

u + A%u+d(x)Du=0, xeRY t>0
u(0) = ug in RV,

Moreover the semigroup has the smoothing estimate

Moy et T4y (N
ISP, (W) toll i oy < —7 5 ol oy, £>0, uo € Hy'(RT)
for every v, € I(q,a) with v > =, and
M, .e* )
ISP, (D)uoll 1y @y < t%ziﬂuoﬂw @y >0, up € LH(RY)
q 1"

for1 < q <r < oo with some My ~, My, and i € R depending on d only through R,.

For each P,, the interval 1(q,a) is given by
a N, 1 1 N 1 1 a
I(g,a)= (142 Sl TS T c(-1+21).
<q7a’) ( + 4 +— 4 (p q,)+7 4 (p q)+) ( + 47 )
Finally, if, ase — 0
. N
d. —d in LLRY), p>-—r
4—Fk
then for every T' > 0 there exists C(e) — 0 as € — 0, such that
Cle)
HSPE (t) - SP(t)”E(H‘l%q(RN) HM/’Q(RN)) S t,y/_,y7 Vo<t S T
for all v,~" € I(q,a,b), v >+ and for all 1 < ¢ <r < oo,
C(e)
||SPg(t) - Sp(t)H,C(Lg](RN),LTU(RN)) S t%(é*%) VO <t S T.

Proof. The proof is as in proof of Proposition 510 but using Proposition instead of
Proposition The analyticity comes again from part i) in Theorem ]

Remark 6.9 We can replace D* in (6.9) by (—A +cl)¥? with 0 < a < 4 as in Theorem
212
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7 Some other higher order equations

In this section we show that all the results in Sections d Bl and [l above also hold true
for other natural powers of suitable operators, and in particular, for any power of the
Laplacian, (—A)™, with m € N. The proofs below have barely no changes with respect
to the ones above, and we now detail the main points for them. We start reviewing the
abstract results in Section [4l

Proposition 7.1 Proposition[{.1 remains true for Aj', m € N, as long as the sector Sy 4
Jor Ay has an opening angle ¢ < 35-.

In fact, this is the original result in Theorem 10.5 in [12].
Now, for the interpolation scale, similarly to Propositions [4.3] we get

Proposition 7.2 Let Ay € H(E1, Ey) and assume A} = Ago---0 A, € H(E,, Ey),
m € N. Then on the interpolation scale X, = Ep, with « € R we have AT := A, o
0 Agym € H(Xaym, Xo) and AF defines a semigroup Sam(t) in {Xa}aer such that
Sar(t)|x, = e~ " and

C(a - 6) ut

[Sam (D)l £x5,5x0) < T © t>0,a,0eR, a>p

for any p > type(Ay*). The constant C(a — B) is bounded for o, B in bounded sets of R.
If Ey is reflexive, the negative side of the scale can be described as

X_ o= (X} and A™, = (A", a>0

and 1t holds that u
e*ATat — (ean )/.

Furthermore, the problem
u +ATu =0, t>0
U(O) =up € X,

_Am
:eAt

for a € R has a unique solution u(t) = San(t) a ‘.

On the other hand, for the fractional power scale, as in Proposition [4.4] we get

Proposition 7.3 Let Ay € H(E, Ey) and assume AJ' = Ago---0 A, € H(En, Eo).
Also, fit N € N. Then on the fractional power scale Y, = Fo with « > —N we have
AR = Ag o0 Aaim € H(Yaym, Ya) and AF defines a semigroup Sam(t) in {Yata>-n
such that San(t)]y, = e <" and

Cla—
IS Ol < CEZDent 150,02 5> N

for any > type(Ay'). The constant C(a — [3) is bounded for o, B in bounded sets of R.
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If Ey is reflezive, the negative side of the scale can be described as
Y.o= Y5 and A™, =(A™)  a>0.

and it holds that ﬁ
e—A’_"at — (e_AO‘ )/.

Furthermore, the problem
u+A%u =0, t>0
U(O) =ug €Y,

for a > —N has a unique solution u(t) = Sam (t) = e A

Z"ntuo.

The proofs for both propositions follow the same steps as for Propositions and [L.4]
but replacing A? by (—A)™. Note that when shifting the operator Ay = Ay + ¢, the
perturbation P obtained in the proof of Propositions and [£4]is different (given by the
binomial theorem), but the same argument can be repeated.

We now consider powers of the Laplacian in the standard L4(R") spaces. The following
result is similar to Lemma [EJl Note that (—A)™ has bounded imaginary powers (see
Remark [4.5]), thus the fractional and interpolation scales coincide.

Lemma 7.4 For 1 < q < oo, in Ey = LY(RY) the operator (—A)™ with domain E,, =
D(—A™) = H*™4(RN), satisfies the estimate

1((=A)™ = N) M pa@ny < M for all X € Sy me
where ¢ > 0 is arbitrarily small. Furthermore o((—A)™) = [0, 00) and therefore

type((—A)™) = 0.

The proof is exactly as the one in Lemma [B.J], but using Proposition [ZI] instead of
Proposition [£.1l This information, together with Proposition leads to

Lemma 7.5 Consider the problem

{utJr(—A)mu:O reRN t>0

u(0) = uyg in RY (7.1)

with m € N.
i) Then for 1 < q < oo, (71) defines an analytic semigroup, S_aym(t), in the scale
Xo = Epo = H™(RY), a € R, such that for any jo > 0 there exists C(a — [3) such
that

C(OZ - /B) e;l,ot

= t>0, o, R, a>p.

| S(*A)m (t) HL(HQmﬂ’Q(RN),HQma,q(RN)) <

it) The analytic semigroup, S_ayn(t), in LYRY), 1 < ¢ < oo, satisfies that for any
o > 0 there exists My, such that

My,
||S(7A)m(t)||£(LQ(RN)7LT(RN)) S ﬁeﬂot t>0
q T

tQm
forl <qg<r<oo.
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Note that the proof in Lemma [5.2] can be carried out now taking (—A)™ instead of A? in
the scale of spaces.

Also note that the solution of problem (Z.1]) can also be described as the convolution of
the initial data with the fundamental kernel for the m—Laplacian operator, which satisfies
suitable Gaussian bounds; see e.g. [8 [0].

We can now add the perturbations to (Z.1J), as in Theorem E.10

Theorem 7.6 Leta, b € N with k =a+b <2m —1 and P, be as in [5.4). Assume
that ||d||LpU(RN) < Ry with p > QWJL\ik. Then for any 1 < q < co and such P, there exists

an interval I(g,a,b) C (=1 +5%,1—5L) containing (—1+ 5= + %, 1—L— %), such
that for any v € 1(q, a,b), we have a strongly continuous, analytic semigroup, Sp, ,(t) in

the space H*™4(RYN), for the problem

ug + (=A)"u + Db(d(x)D%u) =0, xRN t>0
u(0) = ug in RV,

Moreover the semigroup has the smoothing estimates

ut
Mywe

= ol zmvayy, >0, uo € H>™4(RY)

||SPa,b(t)u0||H2m7/’q(RN) <

for every v,y € I(q,a,b) with v > ~, and

M, et
1Sk, (t)uoll 1r@yy) < 7=

fam (g 7)

|uol| Larry, >0, ug € LY(RY)

with 1 < ¢ <r < oo and some My ~, M, and i € R depending on d only through Ry.
Furthermore, the interval I(q,a,b) is given by

a N 1 1 b N 1 1
I hHh=(-1+—+ —(-—— - (T _Z
Finally, if
N
d. —d in LP(RY >
m U( )7 P 2m—k:

then for every 1 < q < oo and T > 0 there exists C(e) — 0 as € — 0, such that

Cle)
||SPs (t) - SP(t)||g(H2mmq(RN)7H2m~/’,q(RN)) = m, Vo<t <T
for all v,~" € 1(q,a,b), with v >~ and
Cle
1Sp. (1) = Sp()ll co@y),or@yy) < #71)1), VOo<t<T
2m\q r

forall1l < q<r <oo.
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Note that now, the amount of possible combinations of perturbations becomes enor-
mous, however, they can be combined just as explained in Remark [G.111

We finally turn into the uniform spaces L%(RN ). First of all, we check the information
about the spectrum and resolvent set for (—A)™ in L (RY), with the same ideas as in
Proposition [6.3], that is, using Proposition [[.1] and Remark 42l

Lemma 7.7 Forl < q < oo, the operator (—A)™ in the space Ey = L (RN) with domain

B, = D((=A)™) = HVI(RY), satisfies the estimate
H((=2)™ = M) lzg @y < MIA
for all X in a sector Some as in (31) for ¢ > 0 arbitrarily small.
Furthermore, o((—A)™) = [0,00), and thus, type((—A)™) = 0.
Again, this information, together with Proposition leads to

Lemma 7.8 Consider the problem

u + (—A)"u=0 zeRN t>0
u(0) = ug in RY.

i)Then for each 1 < q < oo, (7.§) defines an analytic semigroup, S(_ayn(t), in the scale
X, =FE,. = Hfjma’q(RN), a € R, such that for any ug > 0 there exists C' such that

Maﬁe"ot

toa—B ||UO||H;§B,(1(RN), t>0,uy € Héﬁ7q(RN)

||S(7A)m(t)UOHH,@mavq(RN) =
with o, B € R, a > . .
i) The analytic semigroup S(_aym(t), in LE(RY), 1 < ¢ < oo, satisfies

s oy < M 0,up € Lf,(RY
| (*A)m@)uOHL{](RN) = t%(;_;) HUOHL?](RN)a t>0,up € L{;(RY)
m\q T

forany 1 <q<r <oo and py and some M,, > 0.

Then adding perturbations as above, we have

Theorem 7.9 Let a € N, a < 2m — 1 and ||d||L1[)J(RN) < Ry with p > =2~ then for

2m—a’
any 1 < ¢ < oo and any P, as in (G.9) there exists an interval 1(q,a) C (=1 + 5=,1)
containing (—1+ 5= + %, 1-— %), such that for any v € I(q,a), we have a continuous,

analytic semigroup, Sp,(t) in the space H"" (RN, for the problem
u + (=A)"u+d(z)Du=0, xRN t>0
u(0) = uo in RN,
Moreover the semigroup has the smoothing estimate

ut
M,y e

T2 ol gy, > 0, up € HEI(RY)

O pr—
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for every v,~" € I(q,a) with v > =, and

t
M, et

ISP, (t)UOHUU(RN) < AT

luollzs vy ¢ 0, o € LY (RY)

with 1 < g <r < oo and some My, My, and jp € R depending on d only through Ry.
For each P,, the interval 1(q,a) is given by

a N 1 1 N 1 1
1 =(-14+—4+—(F--=)s,1 = —(-—— —1+—1
(0.0) = (<14 3o (o = L= 5o = ) € (14 51)
Finally, if
N

d. —d in LY(RY), p> S—

then for every 1 < q < oo and T > 0 there exists C(e) — 0 as € — 0, such that

Cle)
1Sp.(t) = Sp (Ol irmaeny fromra@ny < 75 VO<t<T
for allv,~" € I(g,a,b), v > 7" and
Cle
19.(8) = Sp0) | ingenirey € ol VO<E<T

foralll < q<r <oo.

The proofs of both Lemma and Theorem follow the proofs of Lemma and
Theorem [6.8, just replacing A? by (—A)™ as the order of the operator involved.
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